Generation of time delays on analogue computers

By J. L. Riley and P. H. Walker*

An analogue computer method of achieving a constant transport delay over a particular frequency
range is justified. A circuit is given for representing a Padé approximation to the delay. Three
different sets of values for the Padé coefficients are proposed and compared with respect to their

accuracy over the frequency range.
(First received October 1967)

1. Introduction

Delays arise in the investigation of many physical
systems. The simplest example occurs in the study of
the control of a steel-strip rolling mill where the thickness
of the sheet is required to remain constant at a particular
value. The thickness is measured at some time after it
has been determined by the rolls, and no information
about the measurement is available to reposition the
rolls until a finite time after the sheet leaves them.

There are several methods available for achieving this
delay in practice. The first involves the use of a tape
recorder, where the input variable is recorded and the
output variable is played back after the elapse of the
delay time. The value of the delay time depends on the
tape speed and the spacing between the roller and replay
heads. For the achievement of satisfactory results, very
sophisticated and expensive equipment is required and
this usually prohibits its use.

A second method uses a rotating drum with a number
of capacitors at its circumference. The drum acts as a
sequential switch whereby the input voltage variable is
applied to each capacitor in turn and the capacitors are
discharged after the required delay time. This time
depends solely on the speed with which the drum rotates.
Over a hundred capacitors are normally required for
this technique and these must be of high quality. This
factor, together with its general unsatisfactory per-
formance, make its use undesirable.

A modification of this method replaces the capacitors
by a magnetic core store (Electronic Associates Ltd.
(1964)). The sampled input data is passed through an
analogue to digital converter and stored in a digital
memory unit. A “stepped” approximation to the data
is obtained by reading out each stored value after Tp
seconds. The true output variable is recovered by
reconverting into analogue form. This requires a large
number of components and is more suitable for hybrid
computing systems.

A fourth alternative enables the delay to be simulated
on an analogue computer. This has the advantage that
the same type of components can be used to generate
the delay as are used in the simulation of the rest of the
system.
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Two of the sets are considerably more accurate than the third.

2. Basic theory
A time delay is characterised by

Sot) = fit — Tp)
where f; and f; are the output and input variables and
Tp is the delay.
Taking the Laplace transform,

FO) = 15 — exp (— 1) 1)

The frequency characteristic is given by replacing s
by jw

.. F(jw) = exp (— joTp) = cos wTp — jsin wT)p

S F(w)| =1 o F(jw) = — «T).

Thus the delay unit requires a level frequency response

and a phase angle proportional to frequency for all fre-
quencies of interest, if the delay is to be constant.

. Tp= ‘—1% [LF( jw):l.

Since no electric network has the exact response of
the ideal transfer function, the analogue computer method
of simulating the delay employs a linear computer
circuit in which this transfer function is approximated
by a ratio of polynomials (often referred to as Padé
polynomials).

The transfer function can be written

Fy 1 —a;s+ axs? — ass® + ass. 5
F, 14 a;s + as® + ass’ + asst &)

The accuracy of the expression depends on the number
of terms taken and the values of the coefficients. In a
fourth order approximation in which terms of up to the
fourth degree are included, the phase angle remains
proportional to frequency to within 1° up to a maximum
value of

Tp = 7-50 rads.

For convenience a delay of 50msec is chosen; a value
representative of the size of delay often encountered. A
frequency range extending up to 20 hz, therefore, gives a
required maximum value of

Tp = 6-28 rads.
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Fig. 1. Computer circuit of transport delay

A fourth order Padé approximation is, therefore, a
reasonable choice for the generation of this time delay.

The circuit used to reproduce this approximation is
shown in Fig. 1 and confirmation of its validity is given
in the Appendix.

3. Calculation of coefficients

The magnitudes of the coefficients seem to be a point
of disagreement among several authors (Rogers and
Connolly (1960), Cunningham (1954), Morrill (1954),
Gilbert (1964)).

Three sets of solutions are considered and shown in
Table 1. The derivation of two of them is given and the
other is included for comparison purposes.

Table 1
a a as aq
. 1 ) 1 3 1
Set 1 1Ty 9-34 Ty 34 Tp 1680 T
1 1 1 3 1
Set2 | 2Tp | gqTo* | 75670 | apo T
1 1 1
Set 3 % TD O A~ T 2| o— T 3 Py Ty TD4

8:933°2 179-12° P | 1072

Set 1 can be obtained in two ways:

(a) Expand the exponential term as an infinite series
and equate it to the ratio of the Padé polynomials
— a5 + as? — ass? + aust
l + a;5 + a,s? + a;s3 + ayst

s2T3 3T}  s*Tp
=l=sTo+37 =737 *1 —

F,
F_eXP( sTp) =

Substituting the values of the a coefficients in terms

of T (see Appendix) and multiplying out, we have

b= 1]5111 T+10k, S 1£J;cls3T3+ﬁ—(7l(W’ﬁS4T4
=1+sT(W]2€1_1)+s2T2(1](;k1 10k1 2)
+ $°T° 101321 1]5111 20k1 6)

+'T 4(10,000k1 10]:)4k1+20k1 60k, 24)
+...

By equating terms of the same degree, an infinite

number of simultaneous equations is produced.

Equate sT terms,

1— 1’5]2(1 1]5—12(, k, = 5k,.
Equate s2T2 terms,
T ok + 3= Top, 2= Sk
Equate s3T3 terms,
ke ks k, _12_ ks
100k, 10k, ' 20k; 6 100k,
6k, — 30k; + 15k, — 50k, = 0. 3)
Equate s*T* terms,
- & 21(;111 60k; 724 =0
— 6k, + 30k; — 10k, + 25k, = 0. 4)

By adding (3) and (4) we have &k, = 5k;.
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Thus the first four equations are not independent and
yield only one result, which can be re-stated as

al :%TD

Equations from the 5th, 6th and 7th powers give an
independent set which can be solved for a,, a; and a,.
We have:

5th: —6 + 300k, — 1000k; + 250k, — 500k; = O
6th: 36 — 1200k, -+ 3000k; — 600k, + 1000k; = 0
7th: —42 4+ 1050k, — 2100k; + 350k, — 500k, = 0.
These can be solved to give:

k, =0-168, k, = 0-840, k3 =0-180, k4, = 0-200

1 1 1
2 3 — 4
al-—%TD 02—9'34TD a3—84TD a4—1680TD

(b) The second way is shown by Morrill (1954) and
Perron (1950). The Padé approximation is stated as:

_ pX pp — DX?
Bl =14 o T e +v — 02!
4 pp — D — 2)X°
m+»p+v—Dp+v—2)3!
wp — D (p —2)(p — 3)X*
(p+v)(e+v—Dp+v—2)(p+v—3)4!
pX pp — DX
CudX) =1 =G T (i F e + v — D2
. wp — D(p — 2)X°
(+v)(p+v—Dp+v—2)3!
pwlp — D — 2)(r — 3)X*

+

FErne = DEFr—2 (v 34!
and
F,, (X)
Lt = = eX,
@+ o Gy, o X)
Putting X = — sTp, p = v =4 we have a fourth-
order Padé approximation to the delay
1
1 2772
. —1 7T0s+9.34s T5—...
exp (—sTo) = T+ 3705 +...

The set 2 coefficients are quoted by Gilbert (1964), but
no proof of their derivation is given.

A third set of coefficients is derived by expressing the
fourth-order Padé approximation in a product form
(Rogers and Connolly (1960)):

T) — (1 —2¢mys + 7%52)(1 — 20,78 + "’%52)
exp (=5TD) = (1127 7,5 + 21 + 2075 + 735
Tp=4Lim + Lp72)

The delay can thus be considered to be made up of
two second-order delay elements with time constants of

where
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4¢;7; and 4{,7, respectively. By proper choice of
and 7 for each element, the accuracy of the representa-
tion can be improved for larger values of wTp. The
amplitude response is level for all frequencies and the
{ and 7 parameters can be adjusted to extend the required
linear-phase relationship as far as is required.

It is found that for any term in the product above, a
value of { less than 14/3 gives a phase angle which for
increasing frequency differs from the ideal —wTp, by an
error that is initially positive. A value of { greater than
14/3 gives a phase angle which has an error that is
initially negative.

By selecting a suitable value of {, designed to cancel
the initial phase error produced in the first term, the
required maximum phase shift can be achieved.

The values of such parameters are

1 1-68.

T2

Cl = ‘%’\/3, CZ = 0-4,

Inserting these values yields the set 3 coefficients.

4. Practical investigations

The Padé coefficients are used to obtain the settings
of the coefficient potentiometers in the delay circuit.
The delay circuit is investigated for each set of coeffi-
cients by measuring the phase shift of a sinusoidal input
signal over the frequency range 0-20 hz with the time
delay set to give 50 msec. Because the value of the delay
appears in the setting of a potentiometer, the facility of
a variable time delay is available.

In the steady state s = jw and the time delay can be
expressed:

& . (1 — azw2 + a4w4) —j(alw — a3w3) . A '—‘JB
Fi (1 — ayw? + a,0*) 4 jlajw — az0®) A +jB’

The phase of the time delay can now be expressed:

B A B
H — -1 -1 — -1
/ F(jw) = tan y tan 3= 2 tan y

Inserting the Set 1 coefficients give

1 1
_ . 2,2 74,4
A=1 9.34Tw +1680Tw

1 1
_ 73,3
B—2Tw 84Tw.

T = 50 msec,

A =1 — 0-000268w? + 0-0000000037 w*
B = 0-025w» — 0-00000149 .

At 20 hz,

A= —230, B=0-19

¢ = F(jw) = 2 tan~! (—0-083) = 351°

For

i.e. a9° phase error from the ideal 360°.
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Fig. 2.—Phase shift of time delay with Set 1
coefficients

The phase error for Sets 2 and 3 coefficients can be

obtained in a similar manner.
At 20 hz, Set 2 coeflicients are

A= —1-347, B= —0-01
¢ = 2 tan—! (0-0074) = 360° 48’
i.e. less than 1° phase error.
At 20 hz, Set 3 coefficients are
A= —197, B=0-01
¢ = 2tan—! (—0-005) = 359° 24’
i.e. less than 1° phase error.

These calculations are confirmed in practice and the
resulting frequency responses of the delay for the three
sets of coefficients are given in Figs. 2 and 3. Set 1 is
found to give a phase shift which is linear only up to
17 hz. The other two sets have linear phase shifts right
up to 20 hz.

To obtain a delay of 50 msec two ten-input operational
amplifiers must be included in series with each coefficient
potentiometer, ky, in the delay circuit. With these
potentiometers set at 0-2, a delay of exactly 50 msec is
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Fig. 3. Phase shift of time delay with Sets 2 and 3
coefficients

expected, but it is found that the delay is only 46-3 msec.
Adjusting k, to 0-197 restores the delay time to 50 msec.
This disagreement can only be attributed to the diffi-
culties created by the large number of operational
amplifiers in series.

5. Conclusions

The computer circuit provides an accurate simulation
of a time delay which can be made constant over a
particular frequency range within the limits of the
approximation. In the case of the fourth-order approxi-
mation, the maximum value of the product of the fre-
quency range and the magnitude of the delay is 7-5 rads.
This means that a small delay can be produced over a
large frequency range or conversely a larger delay over
a smaller frequency range. This product can be increased
if necessary by taking higher order approximations.

The circuit is arranged in such a manner that the
amount of delay can be varied.

The Set 1 coefficients do not give the largest delay
possible over a given frequency range, whereas the other
two sets come tolerably close. There is, in fact, little
difference between the effects of the Sets 2 and 3 but
the author’s preference is for Set 3 for which the
derivation is known.

Appendix

Referring to Fig. 1 and writing down the Laplacian
form of the indicated voltages, we have:

F, = —(kiFy — k(Fo)l/s

Fy = —(koFy + kyFo + 10F,/Tp)l/s

F, = —(10k3F, — 10k;Fy + 10F,/Tp)1/s
F; = —(10k,F, + 10k,Fy + 10F,/Tp)1/s
Fy= +F; + 10F,/Tp
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. Fy = —(koFy + kyFo)l/s + 10(k\Fy — k1 Fo)/s*Tp
. F, = —(10kyF, — 10ksF)1/s + 10(ksF; + k>Fo)/s*Tp
—100(k F; — kyFo)/sT2
. Fy = —(10k,F; + 10k Fo)l/s
+ 10 (10k;F; — 10k;Fo)/s*Tp
—100(k,Fy + kyFo)/s3T5
+1000 (k1 Fy — k1 Fo)/s*T 5
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S Fy = F; — 10(10k4Fy + 10k4Fy)/sTp + 2T 2ky(F, — Fy)/10k;
+100(10k3F; — 10k;F,)/s*T2 Let — sTpky(Fy + Fo)/10k; + (Fy — Fy).
e
—1000(k,Fy + kyFo)/s3T3
(eaFy + koFo)ls 40 \ ay = k,Tp/10k,, ay = k3T2/10k,, ay = k4T 3/100k,
. +10,000(k1F1 - ‘I:If—b)/s TD' a, = Tgl0,000kl

Multiply throughout by 7' 554/10,000k, Re-arranging, we have
" s*TAF,/10,000k; = s*T 4F,/10,000k Fy 1 —as + ays? — assd + agst

— 83T 3k4(F, + Fy)/100k, F, “1+as+ a,s% + azs® + aust
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Book Review

Mathematical Methods for Digital Computers, Volume 2, transcendental equations, the use of the ‘resultant’ procedure
edited by A. RaLsToN and H. S. WILF, 1967; 287 pages. for the numerical solution of polynomial equations, and the
ew York, ichester, Sydney: John Wiley and Sons application of alternating-direction methods to the solution
(New York, Chichester, Syd John Wil d S pl f al direct hods to the solut
Inc. 112s.) of heat-conduction problems—partial differential equations
Volume 1 of Mathematical Methods for Digital Computers are not encountered elsewhere in the book, incidentally.
appeared in 1960 and contained twenty-six chapters, each Part VI contains two chapters on random number generation
giving a computer-oriented description of various processes and rational Chebyshev approximation.
or applications of numerical analysis. Volume 2 presents The reduction in the number of chapters, as compared to
entirely new material but has the same format as Volume 1. Volume 1, has allowed considerably more space to be devoted
Thus the formulation and mathematical description of a in this volume to mathematical discussion and development.
problem is followed by a concise summary of the com- This is a particularly valuable feature of the book—combined
putational procedure, a detailed schematic flow chart and a with the extensive list of references, the chapters provide an
box-by-box description of each step. A complete FORTRAN excellent introduction to the topics discussed, besides giving
program is also listed where space permits, and a small a detailed presentation of particular methods. A minor
sample problem is given to illustrate typical behaviour of criticism of Chapter 8 is the suggested use of successive
the process under description. A count of the number of overrelaxation to solve a set of linear equations with a
arithmetic operations involved provides an estimate of the triple-diagonal matrix of coefficients: a direct elimination
running time. method is surely preferable, and is indeed given in Chapter 11.
The present volume contains thirteen chapters grouped The reader is also advised that incorrect results are quoted
into six parts. Parts I and II each contain a single chapter, for the sample problem in Chapter 6 to illustrate the use of
the first giving an introduction to the FORTRAN and Romberg quadrature. The given FORTRAN program has,
ALGOL programming languages and the second describing however, been rerun and produces correct answers.
applications of the quotient-difference algorithm. Parts III, ‘The Editors have obviously been at pains to secure con-
IV and V have the titles ‘Numerical Linear Algebra’, tributions from active research workers in the particular
‘Numerical Quadrature and Related Topics’, and ‘Numerical fields covered, and the result is a book which can be recom-
Solution of Equations’, respectively, and contain three mended for lt§ expert1§e to numerlca‘l analysts and
chapters each. The solution of ill-conditioned linear ~ Programmers alike. Inevitably some topics, such as the
equations, the Givens-Householder method for symmetric numerical solution of integral equations and the use of
matrices and the LU and QR algorithms for non-symmetric Chebyshev series for the solution or ordinary differential
matrices are discussed in Part III, whilst Part IV includes equations, are not discussed in either vo!ume. l_’erhaps
Romberg quadrature, approximate multiple integration and some future Volume 3 will cater for growing interest in these
the use of spline functions for interpolation and quadrature. subjects.
Part V deals with general iterative methods for solving E. L. ALBasiNy (Teddington)
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