Convergence and stability of discretization methods

for functional equations

By J. M. Watt*

This paper gives an expository account of recent advances in the study of discretization methods

for solving functional equations.
and two-point boundary value problems for differential equations are included.

(First received October 1967)

Interesting advances have been made recently in the
theoretical study of discretization methods for the
solution of functional equations. These have achieved
great generality by using the notation of functional
analysis to achieve an economy of exposition similar to
that given by the use of matrices.

This paper, which was originally given in a slightly
different form at the symposium on the ‘Numerical
Solution of Differential Equations’ at St. Andrews in
June 1967, aims to give a connected exposition of this
subject and to indicate its use by applying the results to
particular examples of methods for solving differential
equations.

1. Normed linear spaces: Banach spaces

In this paper I assume that the notion of a linear (or
vector) space is familiar to the reader.

In dealing with a single real or complex quantity one
can take its modulus |x| as a measure of its magnitude.
It is also useful to define measures of magnitude of
elements of more general linear spaces. If they satisfy
suitable conditions we call these measures of magnitude
norms and denote them by ||x||.

In order for a norm to satisfy our usual ideas for a
measure of magnitude we require:

(1) ||x]] = 0. ||x|| = 0if and only if x = 0.
@) [Jox||=]l.[|x]]
@) [Ix + ylI<xl+]lyll

As norm in a finite dimensional vector space we can
take

« a real number.
Triangle inequality.

@ [[o]]., = max |o] 1<i<n

This is the Chebyshev, L., or uniform norm.
®) vl = (w1l + . . . + |va|?)'

The L, or Euclidean norm.

@ llolli =il + ... + [odl

The L, norm.
Corresponding to these we have as norms on the linear
space Cla, b] of all continuous functions on [a, b]

Examples of the application of the theory to both initial value,

a< x<b

@ |11 = max | /)
b 12
® 11711 = ([1reoPkax)

© /1l =] 17 | ax

Convergence of sequences is defined using the Cauchy
criterion. That is (u,) converges if given € > 0 we can
find N such that ||u, — u,,|| < € provided n > N, m > N.

If each convergent sequence has a limit in the space,
the space is said to be complete. A complete normed
linear space is called a Banach space.

If norms are defined on two Banach spaces 4 and B,
and L is a continuous linear mapping (or linear operator
or function) from A4 to B, that is L(ax+By)=aLx+BLy,
we can define a norm of L as

[|L|| = sup ||Lx|| 5

For more details the books of Simmons (1963),
Dieudonne (1960), Liusternik and Sobolev (1961) and
Collatz (1966) should be consulted (in this order).
Simmons, however, does not treat differentiation; the
best account is in Dieudonne.

for all x such that ||x||, = 1.

2. Differentiation of mappings in Banach space
If f(x) is a real function with real argument, we have

Sfle + k) = f(x) + hf'(x) + O(h?).

We use this equation as the definition of the derivative
of a function with respect to a vector or function
argument. Higher derivatives are similarly defined as
the coefficients in Taylor series.

Examples
(1) Vector argument.

f(xl+hl5'"9xn+hn):f(x1""sxn)
k) 9
oL g |+ OCAD?

bxl, ’bx"

e df df
So the derivative is the vector [ —, ..., 1.
dx X,
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Discretization methods

(2) Vector function, vector argument.

filxyy « v oy Xp) fori=1,...n
ofi of h
bxl’ ’ dx 1
Sx+n=fx)+|-------- == | +OdlA]?
bxl’ s g n

= f(x) + Df(x)h + O(|[A|[*)

So the derivative is the matrix of partial derivatives of
the functions.

(3) Function argument.

Consider the mapping F taking the function y(x) into
another function F(y(x)) defined by

Foe) = 22 _ 1(50)
Now
FOG) + hx) = ¥6) + K9 — ) + hx)
= Y + K ) — f)

— F(¥(x)).h(x) + O(||A][)

so that
DF(y(x)h(x) = k' (x) — f,(¥(x)).h(x)
and
DF(y(x)) = — — f,(y(x)).
(4) Second derivative of vector function with vector
argument.
5+ B =56 + 5, Lo
1 & 3%i(x)
+ 21 j,k2=1 bijxk'hjhk+o(|lh|[)3
)
1 2z bzf,(x)
DYfCon? = {2v kEI X, 0% hk}'

It is normally the differential, and not the derivative
that is needed, and this is often easier to define (cf.
DF(y(x)) above).

Note that the first derivative is a linear function of A
and the second is a symmetric bilinear function, etc.

As another example consider the perturbation of the
solution of a differential equation. Consider a mapping
F from a space of continuously differentiable functions
on [a, b] to the product of the space of reals and the
space of continuous functions on [a, b]. (Or in a short-
hand notation G: C’[a, b] - R X C[a, b].)

[ y@—c
G0 = { () — () xela, b]

G(y) =0 has a unique solution y(x) if f satisfies a
Lipschitz condition.
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Define z(x) by

G(z) = a® where @ = {;(x)'

Putting z(x) = y(x) + «e(x) + O(a?) we get

a® = G(z) = G(y) + DG(p)xe + O(a?)
So we deduce that
DG(y).e= O
or e(a) =y
e'(x) — f(y(x))e(x) = $(x).

This determines to the first order in « the perturbation
in z(x) due to a perturbation «® in the differential
equation.

It is trivial to extend this theory to that of a differential
equation in a Banach space E. We merely take the
values of y(x), ¢ and f(y(x)) to be elements of E, so that
G is a mapping from the differentiable subspace of the
Banach space Cgla, b] of continuous functions on [a, b]
with values in E (with norm ||z|| = - sup. ||z(x)|| £), onto

the product space E X Cgla, b] (w1th norm ||w|| =
max (| wollz, sup [ o)) if w = v, wo).

If E is taken to be the vector space of m dimensions
with real coordinates the theory applies immediately to
systems of m differential equations in m unknown real
functions.

Notice that the estimates of the discretization error for

the initial value problem given by Henrici (1962) are of
the above form.
Notation: Arguments of functions (or operators) are
usually enclosed in parentheses, but if the function is
linear the parentheses are often omitted. Linear
functions, and the multiplication of two functions are
distinguished if necessary by the context.

If an equation holds for all allowed values of an
argument, it is usual to omit the argument. Thus the
equation for e(x) above would be written

e —f,(y)e=¢.

3. Discretizations

In solving problems numerically we can deal only with
finite dimensional spaces. Infinite dimensional prob-
lems such as the initial value problem just considered
must therefore be approximated by a discrete finite
dimensional problem. This process has come to be
known as discretization.

Considering the initial value problem again we define
the discretization operator A%, which is a linear—
mapping, from C’[a, b] to RN+! by

ANy = [¥(a), y(a + h), y(a + 2h), . . ., ¥(b)]
h=hy=(b— a)N.

Similarly AY from R x Cla, b] to R¥N*1 is defined by

AR[zo, 21] = [20, 21(a), z,(@ + h), . . ., zy(a + (N — Dh)]
Zo € R, z, € Cla, b].
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Discretization methods

The original equation G(y) = 0, or more generally
G(y) = b is now replaced by

Oy(N) = ARb.

Here A¥b and 7V are vectors of (N + 1) components,
and this equation is a set of (N + 1) equations in the
(N + 1) unknown components of #V. The relationship
between the various spaces is illustrated in Fig. 1.

The mapping @, is chosen so that @ is a good
approximation to G, or rather so that

® (AN 2) is a good approximation to AJG(2).

Each of these elements of BV is a function of an element

of A.

We expect the approximation to get better as N
increases and tends to infinity.

The discretization is said to be p-consistent if there is
a number C such that

|| @ n(AY y) — AZG()I

For example—the initial value problem solved by
Euler’s method:

< CNg». M

N =), 7Y, ..., 7]
N
Mo — €
0= ®y(nN) =
W) { (Y — )l — o)

IKi<N
We have

max | — )k — f(y(x0)
— [y — fE D]

< Lh < L(b — a)/N for some L provided f(y) is
sufficiently smooth. Hence Euler’s method is 1-con-
sistent.

We are interested in the behaviour of ||7¥ — Al y|| as
N — 0. The method is convergent if this tends to zero,
for then 7Y — p(x¥) as N— co. The method is con-
vergent of order p is there is a number C; such that

[|[9¥ — A¥y|| < C,N-7 for all N. )

It is, of course, assumed that ®  has a unique inverse
so that @ y(7™) = A}¥b can be solved for each value of N.
Thus 7V = ¢5'(A}b). It may happen that this set of
equations becomes more and more ill-conditioned as N
tends to infinity, and in the limit that it becomes
‘infinitely ill-conditioned’. If this is the case we say
that the method, or the sequence of mappings (Py1), is
unstable.

On the contrary if there is a number L such that

1@M(E) — QNN > LIIEY — & ©)

for all ¥, Y and for all N we say that (®y') is
asymptotically stable. (The condition is that ®y!
satisfies a uniform Lipschitz condition.) Since only
asymptotic stability is used in this paper the adjective
‘asymptotic’ is usually omitted.
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Fig. 1

Remarks

(@) According to this definition, stability is a property
of the discretized problem only; it does not depend on
the original problem.

(b) If rounding error is present and instead of
@ y(yV) = AN(b) we have @ y(n"N)= AJ(b) + €V, the
stability guarantees that the effect of the small rounding
errors €N on 7V, is small.

(¢) Our definition of stability includes both Henrici’s
(1962) strongly stable and weakly stable methods. (For
an interesting discussion of strong and weak stability
see Stetter (1965a).)

(d) Most stability definitions that have been given for
ordinary differential equations are what I would consider
to be necessary and sufficient conditions for stability.

It can now be shown that with these definitions,
consistency and stability imply convergence.

Theorem 1f @, is consistent of order p at y and the
sequence of inverse mappings (®y!) is stable, then the
discretization ®, of G is convergent of order p at
b = Gy.
PRrOOF

[ — A%

1 g
< 7 1@NOM) — PN(ATY| (by stability (3)).

1

=7 [1A5G() — O (AN
(since @ y(nV) = ANb = A G(»))
C

< I N-? (by p-consistency (1)).

Hence p-convergence is proved.
Stetter (1965) has proved a general theorem about the
form of the asymptotic discretization error; his theorem
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Discretization methods

and the one above can be used to derive easily many of
the results in Henrici’s (1962) book on Discrete Variable
Methods.

Theorem (Stetter) G(y) = b is discretized with
® y(yN) = ALb and there is a relation

On(A2) = AF{G) + 5 g.N "} + O~ (@)

which holds for all z in a subset 4; of 4 containing a
neighbourhood of y, and where g,(y) =0, r < p.

The sequence (®Py!) is stable, G and the g, are dif-
ferentiable, and G’(y)e = d has a unique solution e in
A, for all din B.

Then
7V = Alj(y + N~7e) + O(N —7-1)
where e is given by
G'(ye = —g,»). ©)
PrROOF Put e¥N = N — AN(y + N —re)
Then
L||eN| < ||@n (™) — @ N (AL (Y + N —7e))|| (by stability)
<[|a3{b— 6 + N )~ S g,r+ N}
+ O(N 7~
(by (4) provided N> Nysothaty + N Peisin 4,)
= [|AF{b — G(») — G'(»)N ~Pe — g, (»)N#}||

+OW 1)
(using the differentiability)

= QN 771 (using (5) and G(y) = b).
Hence ||eN|| = O(N —?~!) and the theorem is proved.

The theorem can be extended to obtain further terms
in the expansion of 7V provided that G and g, are
sufficiently differentiable. This justifies the extrapolation
to the limit techniques which have been treated in several
recent papers: see Gragg (1965), Bulirsch and Stoer
(1966, 1966a). It also extends to the case where the
powers of N in (4) are not integral.

Notice that the theorem derives information about an
expansion of the inverse of an operator G from an
expansion of G itself. It is useful when G—! is required
but G is simpler to deal with.

This theory is concerned with the behaviour of dis-
cretizations as N tends infinity. In practice, of course, a
finite value of N must be used.

Example 1: Second order Runge Kutta

Ay is the continuously differentiable subspace of the
space 4 = Cg[a, b] of continuous functions on [a, b]
with values of E.

B is the space of pairs of elements the first of which
belongs to E and the second to Cgla, b].
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AN = BN is the space of vectors of (N + 1) components
belonging to E.
AN: a mapping from 4 to AN defined by

ANz = {2(xo), 2(x)), . . ., 2(x§)}
X, =a + nhy,, hy= (b — a)/N
A%: a mapping from B to BN defined by
o 21 (XN 1)}

z(a) — ¢

z'(x) = f(z(x)) x€[a,b]

AN {zo, 21} = {zg, z1(x0), Z1(xy), . .
G(z2): A— B defined by G(z) = {
@ y({N): AN — BN
Dy (M)

_[B—c
B { (81— EDIhn —3LAEY) + ALY +hnf(E))]

0< n<N.
We have
z(a) — ¢
PnlA32) = { @Cons 1) — e
— 3 f(x,) + f(2(x,) + hnf(z(x,)))]
_[z@—c
- [Z/(X,,) - f(z(x,,))]
+ Yhn(z7(x,) — f(2(x0) f(2(xp)]
+ hy[E 27(x,) — %7 (2(x,)) (f(z(x,0)))?]
+ O(hg)
= AY{G(z) + £,(z)/IN + g2(2)/N?%} + O(N —3)
where
0
&i(2) = { b — Q2" — f)f (@)

0
£2) = { b — a3z — 1@ (f)].
If G(y) =0 then g,(y) =0, gx(y)#0.

So, assuming that the method is stable, it is of second
order and Stetter’s Theorem shows that

Oy = y(x) + N ~2e(x,) + O(N %)
where G'(y)e = — gx(»)
ie. e(@=0
e'(x) — f(y(x)e(x) = — g:(¥(x)) x¢€[a, b].

To prove stability we assume that fsatisfies a Lipschitz

condition
/() — Il < Ll yy — 2.
Suppose that, omitting suffix and superfix Ns

Q) =d, D) =e
and use the norms [|{|| = max ||{,]|[, ||e]| = ma’xNHe,,H,

St his

etc.
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Discretization methods

Then
[1o — &oll = [ldo — el

and

[1Zn+1— Enial| =

' Lo + 3HLA(L) + f(Ln + B + dy
—&n — LA + [ + H(ED)] — es

(1 + AL + 302L2)|| L, — &4l + hlld, — €|

n < N, using the Lipschitz condition.

<
for 0 <

It is now easily shown (cf. Henrici (1962 p. 18)) that:

|1n — €all < exp (nhL)||do — e|
+ (exp(nhL) — 1).max ||d, — e,||/ L.
Hence, ot
1Z — €ll< max{exp((b — a) L),
[exp (b — a)L) — 1]/L}.||d — e]|
showing that (®x!) is stable.

4. Deferred correction

The following theorem supplies some theoretical justi-
fication for the methods of deferred or difference
correction (Fox and Goodwin (1949), Fox (1962)).

The problem considered is that of the previous para-
graph and the initial discretization is as before, but a
sequence of corrections of increasingly higher order is
givenby the iy, ,i=1,2,..., 4.

Theorem Suppose that
(a) Gy =b.

(b) @ is consistent of order p with G and that the
sequence of inverse mappings (®y!) is stable.

© | lhw, (8) — il EDI < KN || T — ]
1<i<g (1)
(@) || ONAYZ) + Py, (A)Z) — AJGZ)|| < CN7™
1<i<gq (2
i.e. that @y + ¢, ; is consistent of order r;.
(d) Define 7Y by ®y(n)) = Al } &
O n(nY) =AYb — Pni(ni) 1<i<q.
Then 7Y — Ayl < CN ™™ 4@
1<i<aqg.

N

where 5o = p, s; = min(r;, s;—, + p)
(Note that if r; = (i + 1)p then also s; = (i + 1)p.)
Proor. The consistency and stability show that there is
a C, such that (4) holds for i = 0. Assume there are
constants C; such that (4) holds for all i such that
0<i<j<gq.
Then
L7} — Ayl < [|®n (7)) — ©n(AINI]
(by stability)
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= |[A%b — ¢, j(m)=1) — CN(ATNI] (by (3)
< |[n =) — ¢, AN
+ [|AFG() — @ N(ALyY) — iy, (ALY
< K.N-PC;_yN~%1 4 CN~"
using (2) and (4) for i =j — 1.

So (4) holds with i = j and hence for all i (1 < i< g),
proving the theorem.

The result of this section is similar to those of Pereyra
(1966).

Example 2
Consider the two-point boundary value problem

y“ '_—f(xay) = 0’ y(a) —a= 0, J’(b) _ﬁz 0.

This problem has been studied by Henrici (1962),
Chapter 7, and by Lees (1965) and Pereyra (1966). We
assume that f(x,y) and f,(x,y) are continuous and
0 <f/x,y) < L for a< x < b and all y, under which
conditions the problem has a unique solution y(x).
(The existence of a unique solution can also be demon-
strated under less stringent conditions than these (Lees
(1965)).)

Take A = Cg([a,b]), B = C([a,b]) x R?,
AN = BN = RN+1_define A, as before, take
AY{Zo, Z1, Z,}={Z(x1), Zo(X2); - - s Zo(XN-1), Z1, 22}
and define ® y by

(CnN—l - 2§nN =+ C,,N-}-])/hz — f(xn, L),

- 0<n<N
OV =1 ¢, — a "
In—B

Now Henrici (1962) gives a result (7-46 page 363),
that implies immediately that, in our notation,

[|(@-)(ALZ)]] < 3 — a).
An almost identical analysis shows that
[|@-1(by) — @1(by)|| < 3(b — a)||by — b2||,
and hence (® 1) is stable.
The operators ¢, ; are defined by

lIIN,i(CN) = {le,i,O, ¢N:i71, LR "/}N, is N}

where
N0 = ¥nin=0 i>1

¢’N,1,n:'T_2184€£,V/h2- 2<n< N—2

1 1
— | — — §4/N _—_S6/N 2
‘l’N,Z,n_ [ 128 Cn +908 Zn]/h ’
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etc., where terms are those of the expansion near the ends of the range as values of Y outside the

1 1 1 range 0 < n < N are required. They must be replaced

hw) = 8w, — - 84w, + ) 86w, — %0 88w, 4 . .. by unsymmetric formulae giving a similar accuracy, but
using only the available V.

and § is the central difference operator given by It is easily verified, using Taylor expansions that the

theorem of (4) can be applied withp = 2 and r; = 2i + 2
and hence if 7, is calculated according to the specification
The above central difference expansions cannot be used given there it will be correct to O(N —2—2) or O(h%+2),

dw, = Wer1/2 — We—1/2-
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