A least squares method for Laplace’s equation with

Dirichlet boundary conditions

By P. Jarratt and C. Mack*

A technique is given for solving certain partial differential equations in regions whose boundaries
are formed from polygonal lines or arcs of some simple curves. The method is simple to apply
and is attractive when solutions are required for a variety of related boundary configurations.

(First received August 1967, and in revised form November 1967)

1. Introduction

In this paper a method for solving Laplace’s or Poisson’s
equation is described for cases where the function is
specified on the boundary. The method depends on
fitting a linear combination of known solutions by least
squares to the boundary conditions, and in cases where
the boundaries are composed of straight lines, or arcs
of circles and ellipses, it is shown that the normal equa-
tions can be rapidly set up by means of recurrence
relations. For problems of this kind, which arise fre-
quently in practice, the approach we have used appears
to possess a number of significant advantages over the
more usual finite difference techniques.

2. Illustrative problem and basic method

We consider the problem of determining i satisfying

the Poissonian Equation

1

wirytrwgp=—2 2D

in a region R and subject to the condition ¢ = 0 on the
boundary S. The solution of (2.1) is of the form

1 %)

r2
b=—75+4 @2)

where the first term on the right of (2.2) is a particular
integral for (2.1) and ¢, the solution of Laplace’s
equation, can be written

b= A, + § r(4, cos nd + B,sinnf), (2.3)
n=1

for some circle of convergence and origin inside the
boundary.

We now obtain an approximate solution of (2.1) by
truncating the series (2.3) for ¢ at the mth terms and

minimising I«ﬁzds, the resulting normal equations
s

having the form
DAy + X BB =C;, j=0,1,...,m
k=0 k=1

m m
,kgoﬂk,jAk +k2_:1 YixBe =S, j=12,...,m

where

ri+k cos j6 cos kds,

s

k= jrf+k cos jo sin kfds,

s

%jk =

Yik = jrf+k sin j6 sin k0ds,
Ci=1% Jr”z cos jds,
s

S; =14 jrf+2 sin jds. (2.4)

Now in many practical problems, the boundary s is
formed from a small number of simple curves, and we
shall show that in certain cases it is possible to evaluate
the integrals (2.4) rapidly from recurrence relations.

3. Straight line boundaries

In Fig. 1, 0 is the origin and P the point (r, 6) on the
straight line 4B. From the figure we obtain immediately

r=asec(0 — a), ds = asec? (0 — x)df. (3.1)
If now we define

IM,N = CM,N + ISM,N = SCCM(O — ot)eiNedB, (32)
AB

we find, by substituting the relations (3.1) in the expres-
sion for «; , and using the sine and cosine addition

A
P(re)

Q (a.x)

Fig. 1
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Laplace’s equation

formulae, the result

% = 3A T Ci ey ik + Crpra, i)
Also by integrating (3.2) twice by parts we obtain the
recurrence
(N2 — M),y = €N secM+1(0 — o)[M sin (0 — «)
— iNcos (0 — «)] — M(M + DIyyia n. (3.3)
Hence
(N2 — M?)Cyy y = secM (0 — o)[M sin (0 — «) cos N
+ Ncos (0 — «)sin NO] — M(M + 1) Cpp19,n, (3.4)
and by setting M = N we also have
Chrrt2, m=secM+1(§ — o) sin [(M + 1)0 — «)/(M + 1).
3.5)
We now show how these results may be used to generate
the various contributions to the least squares matrix.

The values of «; , required are those occurring in the
symmetric array

[C; o Cs, 1 Cy, 2
(Cs, 2+ Cs,0) (Cs, 3+ Cs,y) .

(Cs, 4+ Cs,0) -

where for convenience the factors 1a/+k+1 have been
omitted.

First, C,,  is easily found by setting M = 0 in (3.5),
and the sequence C4, o, Cq, ¢, - - -» Cam + 2, 0 €an then be
generated using (3.4). Similarly C; , is computed from
(3.5), enabling us to obtain the elements Cs ; Cy, 4, .. .,
Com +1, 1> and in a like fashion we find all the terms in
the array except for the sequence C,,1 5 1y Cpi3, m+15

. o> Cym+2, 2m in the last column. However, these are
immediately available by repeated use of (3.5). A
precisely similar treatment enables us to obtain the
values of B, ;, while an examination of y; , shows that
these elements consist of values which have already been
computed in finding the «; ,. Again, C; = 1a/*3C;, 4 ;,
S; = 4/+3S;, 4 ; and these also will have been found in
the computation of the «; , and B; ,, apart from C,,
and S,. However, since C,4, , and S, , , are
already available, this causes no difficulties.

If, as is often the case, the boundary S is composed
entirely of straight lines, then by integrating over each
segment and accumulating the results, the coefficients
for the set of A4; and B; can be simply found. In a
computer program the same logic will suffice to obtain
the contribution from each segment and results for
various boundary configurations can be obtained by
altering the parameters a and « appropriately.

A measure of the accuracy of the approximation can

Cm+2, m
. (Cm+ 3, m+1 + Cm+ 3, m— l)
. (Cm+4, m+2 + Cm+4, m72)

(C2m+ 2,2m + C2m+ 2,'70) .
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be obtained by computing the quantity E,, = J-t/ﬂds,

and using (3.1) and the minimum conditions, this can
be written for the segment AB as

a?(a?
Em = E{j Cs, 0o |iAoC4, 0

m
£ 80 Crra s+ 8500
j=
Since the terms in this expression must all be found in
constructing the least squares matrix, E,, can be com-
puted as soon as the set of 4;, B; has been obtained.

It is also possible to assign an upper limit to the error
in ¥, for suppose ¢,, is an approximation to the true
value of ¢ given by (2.3), then ¢,, — ¢ is also a solution
of Laplace’s equation. Furthermore, since the maximum
value of a solution always occurs on a boundary, the
maximum departure of the finite approximation to ¢
from zero on the boundary will give the maximum error
anywhere.

In the case where a particular choice of m yields
insufficient accuracy, the next higher order approxi-
mation can make use of much of the previous calculation
and the new solution found with relative economy.

It is also worth noting that in problems where the
variation of i on the boundary is of the form
h(r cos 0, r sin 8), the approach we have used can again
be applied. The extension to the case where 4 is a
constant is particularly simple.

4. Circular arcs

We now consider the situation where a segment of
the boundary is formed from an arc of a circle.
In Fig. 2, 0 is the origin, C the centre of the circular

A

¥202 YoJe\ g1 uo 1senb Aq 69¥Zy/€8/L/1 L/eIone/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod



Laplace’s equation

arc and R its constant radius. Considering again the
basic integrals (2.4), it is easy to see that these can all
be found provided we can evaluate integrals of the type

Evn = Crn + iSyun = erer exp (Mib)ds. (4.1)

From Fig. 2 we have ds = Rd¢, and defining
a= Rexp (ip) + ¢ = rexp (i9),
b= Rexp(—i¢p) + ¢ = rexp(—if), we find we can
write (4.1) as

Eyn=R j aM +NpNd g, 4.2)

Using ad¢$ = — ida + cd$ and integrating (4.2) by
parts we have
ME,, y = —iRaM NN — NcEp;yq, n—1
4+ oM+ N)Ey_y, n» (4.3)
and for N = 0 this reduces to
ME,, o= —iRaM + McEy, o

Fig. 2 also gives us the relation

r2 = R? — ¢% + rc [exp (i) + exp (— i0)]
and using this in (4.1) yields the recurrence
Ey,n=(R* — ®Ey, -1+ cEpiq, -1 + CEp—15 n-

(4.4)

4.5)
{4.3) and (4.5) may now be combined to give
NCEM_ 1, N— iRaM+NbN + C(M + N)EM+ 1, N—1
+ M(R2 bt CZ)EM’ N—1 (46)

In each case the appropriate recurrences for C,, » and
Sy, n are readily obtained. It is again interesting to see
how the elements of the least squares matrix can be
generated. In this case the values of o; , necessary are
those which occur in the array

Co, 0 1,0 2,0
3z, 0 + o, 1) 3es, 0ty 1)

3(ca, 0 + €, 2)

Now with the starting value c¢q, ¢ = [Re],, We can use
(4.4) to generate successively

4.7
Next by using ¢;, o and ¢, ¢ in (4.6) we can find ¢,

and similarly by selecting successive pairs of values from
the sequence (4.7) we obtain

C1,0€2,00 -+ C2m, 0

Cl, 1» cZ, 15 ¢ ¢ (48)

The next row of « is generated using (4.6) and suc-
cessive pairs of values from the sequence (4.8), and the

. Cm—l, 1-

. Ym0t Cmo1,1)

. 3Cmiz, 0t Cm2,2)

%(sz, o + Co, m) _
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P (a cos ¢, b sind)

Fig. 3

process continues until all the elements of « have been
found. As in the case of straight line boundaries, the
same technique also applies to find the B; , and the
y; 1 C; and S; are again composed of terms already
computed for o and 8.

5. Elliptic arcs

In Fig. 3, P is a point with parametric coordinates
(a cos ¢, b sin ¢) on an ellipse centre C.

In the case of elliptic boundaries it is convenient to

minimise not J¢2ds but ijds where w, a weighting
s s

factor, is chosen to simplify the evaluation of integrals
of the types (2.4). If now we write 4 = rexp (ib),
b = rexp (—if) and set w = d¢/ds, we find these inte-
grals can be computed provided we can evaluate

Ey,n=Cym, v+ iSu, n= JAMBNd¢. 5.1

Using the relations r cos § = acos ¢ + ¢, rsin 6 = bsin ¢,
we have A = d/dé(asin ¢ — ibcos ¢) + ¢, and hence
(5.1) can be written

Ep, v = J.AM*‘BNd(a sin ¢ — ib cos $p)dg + cEps_ 1, n-
(5.2)

cm, 0

By integrating (5.2) by parts we obtain after some mani-
pulation the recurrence
(M + N)E,, y= AM~'BN(asin ¢ — ib cos¢)
+ (M — 1)(@* — b*> — HEy—2, N
+c@M +N—DEy ¢ ~
+ N(@* + b> — cHEpy 1, N—1 + NcEy, n-1
and setting N = 0 gives
ME,; o = AM~(asin ¢ — ib cos ¢)
+ (M — 1)(a? + b* — ¢>)Ep_ 5,0 + c2CM — I)EM(EZ‘)’

(5.3

¥202 YoJe\ g1 uo 1senb Aq 69¥Zy/€8/L/1 L/eIone/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod



Laplace’s equation

Now in this case the array « is given by

Co, 0 €1, 0 Ca 0
ez 0+, ) ey 0t ca )

3(cs, 0 + C, 2)

We easily find ¢, o = [¢];, ¢, o = [asin ¢ + cd],,
and hence using (5.4) we can generate ¢, g, C3, g, - - - Cam, 0-
We also note from (5.1) and the definitions of 4 and B
that E,, y = Ey, » where E,, y is the complex con-
jugate of Ej; . Thus integrals of the form ¢ ;,¢9, 2, - - -,
can be simply evaluated once the corresponding
€1,0 €2, 0, - - -, have been found. For example, using
the real part of (5.3) with M = N =1 to find ¢, ;, we
see we require ¢, 1, ¢, o and ¢, o, Which are all avail-
able. Similarly for ¢, ; we find we need ¢y, 4, ¢;, 1, €1, ¢
and c,, o and again these have all been computed. In
this way we may build up all the elements of the array
aand B; 4, y;, x» C; and S; are again found as in the cases
of straight line and circular boundaries.

6. A numerical illustration

For the purpose of a numerical example we consider
the problem of solving (2.1) in the square 4BCD shown
in Fig. 4 in which « = 45° and a = 1. We make use
of the symmetry of the problem to set = —r?/2 + ¢
where

(6.1)

and where the form of ¢ has been altered slightly to
control the growth of numbers in the solution, and we
investigate the solution of (2.1) in the triangle OCE for

¢=a’ % (r/a)*"A,, cos 4nb,
n=0

B
cm, 0 ]
. %(Cm+|, 0t Cm, 1) E
. Yems 2,0 1 Cm, 2)
A [+
%(CZM, 0 + Cm, m) .
D
Fig.4.

The problem was solved for m =0, 1, 2 and 3 and
in each case the quantity E,, and the values of i on the
boundary, representing the errors, were calculated. In
Table 1 we show the solution vectors [4i],i =0, 1, 2, 3.
The calculation of i along the boundary CE showed
that the errors e, are well approximated by the first
neglected term of (6.1), the maximum value Max e,
occurring, as expected, at the node C. In Table 2 we

/4

give the values of E,, = J Y2ds, together with those of
0

Maxe,, form =0, 1, 2, 3.

7. Discussion

The method developed in this paper belongs to a class
of techniques known as analytic methods as opposed
to finite difference approximations. In common with
most other methods of its type, the least squares approach
we have discussed is limited to a special class of problems,
but where it is applicable it may enjoy a number of
advantages over the more general finite difference

which 6 varies from 0 to =/4. methods. For example, in the problem treated here an
Table 1
\m 0 1 2 3
N
Ay | 6-667 x 10! 5-891 x 101 5-894 x 10! 5-894 x 10!
Ay 9:698 x 10—2 9-077 x 10—2 9-122 x 10~2
A, 2:631 x 10-3 1-754 x 1073
A 2-436 x 10~4
Table 2
m 0 1 2 3
E, 2:222 x 10—2 5-748 x 10—3 1-830 x 10-¢ 1-981 x 107
Maxe,, | —3-333 x 101 | —2-299 x 102 | —5-467 x 10~3 | —2-083 x 103
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Laplace’s equation

error estimate for the solution was readily obtained
and the solution of the same problem for a variety of
related boundary configurations would have presented
few difficulties. From the standpoint of computing
effort, a choice between the two classes of method is not
obvious and will not always be made in the same direction.

In applying the method we have not so far experienced
the traditional difficulties associated with least squares.
However, the problems we have solved have been simple
and difficulties may well arise for larger values of m.
These would be needed when the solution exhibits poor

behaviour near some points, for example in the neigh-
bourhood of re-entrant corners or discontinuous
boundary conditions. The recurrence relations them-
selves which are used to generate the least squares
matrix have proved numerically stable in the cases we
have examined.
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A new method for solving polynomial equations

By G. R. Garside, P. Jarratt and C. Mack*

An iterative method for finding the zeros of a polynomial f(z) is given, based on approximating
f(@|f’(z) by a bilinear form. The method has high order convergence for both simple and
repeated zeros (whatever the multiplicity) and takes very few iterations (average << 15) per zero

however ‘difficult’ the polynomial.

(First received September 1967, and in revised form November 1967)

1. Introduction

The problem of determining numerically all the zeros of
a polynomial equation is of great practical importance
in science and engineering. However, it has proved
difficult to devise a method which works equally well for
all polynomials (whether coefficients are real or complex,
whether zeros are distributed, clustered or repeated etc.).
Wilkinson’s (1959) paper discusses the difficulties and
gives an assessment of a number of established methods
(general accounts have also been given by Hochstrasser
(1962) and Bareiss (1959)).

In this paper a new iterative method is presented
which has proved extremely successful in solving poly-
nomials whether difficult or not. It is not affected by
the multiplicity of the zero unlike Bairstow’s method
(1914), which is impractically slow in finding a double
zero (or two ‘clustered’ zeros), as is Muller’s method
(1956) when the order of multiplicity is three (or there
are three ‘clustered’ zeros). A further advantage of our
method is that at each stage of the iteration the best of
three alternatives is chosen and this reduces the inci-
dence of ‘cycling’ (a possibility with all iterative methods),
and no case of cycling has yet been observed. A novel
technique for starting the iteration has led to rapid
solution with the zero found at each iteration often the
smallest and, practically always, of lower than average
modulus. The iteration is ‘signed off” in a novel manner,
yielding high accuracy. The theory of the method is
now described (together with a generalisation); opera-
tional details follow, and actual examples conclude the

paper.
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2. Theory of the unmodified method

We use the same idea as Jarratt and Nudds (1965)
but we apply it not to f(z) but to f(z)/f"(z). Thus near a
zero o of an nth degree polynomial f(z), we can write

1/F@2) = flf (2) = (z — @)[(b +c2),  (2.1)

where f7(z) is the derivative of f(z). This is true even if
« is a repeated zero when f”(z) will also have a zero at «.
Thus, if f(z) = A(z— «o)(z— B)(z— y)..., then
F@)=rjc— o) +1/c— B +1/z—y) + .. .50
that if z is close to «, we have

1/Fz) = (z — o)[r + (z — ){1/(x — B)
+ (e —y) + ...} + 0z — «)?]
If now we write f(z)/f(z;) = F; 2.2)
and we have three values of z;, namely z;, z,, z3 then
(2.1) and (2.2) combined give the simultaneous equations
b+cz; +aF,=z;F,i=1,2,3. (2.3)

Hence by solving the set (2.3) for a we obtain an estimate
of «. We can now put z, = a and solve (2.3) with
i = 2, 3, 4, thereby finding a new value of a, and so on.
If the process converges, then a converges to .

From (2.3) we easily find the symmetric formula

_ z1Fi(z2 — z3) + 22F)(z3 — 7)) +23F3(z1 — 25)
T Fi(z;—z3) + Pz — z0) + Fazy — z))
which shows that the value of a is independent of the

order of z,, z, and z;. However, in numerical work, the
use of (2.4) leads to a serious loss of significant figures
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