Laplace’s equation

error estimate for the solution was readily obtained
and the solution of the same problem for a variety of
related boundary configurations would have presented
few difficulties. From the standpoint of computing
effort, a choice between the two classes of method is not
obvious and will not always be made in the same direction.

In applying the method we have not so far experienced
the traditional difficulties associated with least squares.
However, the problems we have solved have been simple
and difficulties may well arise for larger values of m.
These would be needed when the solution exhibits poor

behaviour near some points, for example in the neigh-
bourhood of re-entrant corners or discontinuous
boundary conditions. The recurrence relations them-
selves which are used to generate the least squares
matrix have proved numerically stable in the cases we
have examined.
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A new method for solving polynomial equations

By G. R. Garside, P. Jarratt and C. Mack*

An iterative method for finding the zeros of a polynomial f(z) is given, based on approximating
f(@|f’(z) by a bilinear form. The method has high order convergence for both simple and
repeated zeros (whatever the multiplicity) and takes very few iterations (average << 15) per zero

however ‘difficult’ the polynomial.

(First received September 1967, and in revised form November 1967)

1. Introduction

The problem of determining numerically all the zeros of
a polynomial equation is of great practical importance
in science and engineering. However, it has proved
difficult to devise a method which works equally well for
all polynomials (whether coefficients are real or complex,
whether zeros are distributed, clustered or repeated etc.).
Wilkinson’s (1959) paper discusses the difficulties and
gives an assessment of a number of established methods
(general accounts have also been given by Hochstrasser
(1962) and Bareiss (1959)).

In this paper a new iterative method is presented
which has proved extremely successful in solving poly-
nomials whether difficult or not. It is not affected by
the multiplicity of the zero unlike Bairstow’s method
(1914), which is impractically slow in finding a double
zero (or two ‘clustered’ zeros), as is Muller’s method
(1956) when the order of multiplicity is three (or there
are three ‘clustered’ zeros). A further advantage of our
method is that at each stage of the iteration the best of
three alternatives is chosen and this reduces the inci-
dence of ‘cycling’ (a possibility with all iterative methods),
and no case of cycling has yet been observed. A novel
technique for starting the iteration has led to rapid
solution with the zero found at each iteration often the
smallest and, practically always, of lower than average
modulus. The iteration is ‘signed off” in a novel manner,
yielding high accuracy. The theory of the method is
now described (together with a generalisation); opera-
tional details follow, and actual examples conclude the

paper.
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2. Theory of the unmodified method

We use the same idea as Jarratt and Nudds (1965)
but we apply it not to f(z) but to f(z)/f"(z). Thus near a
zero o of an nth degree polynomial f(z), we can write

1/F@2) = flf (2) = (z — @)[(b +c2),  (2.1)

where f7(z) is the derivative of f(z). This is true even if
« is a repeated zero when f”(z) will also have a zero at «.
Thus, if f(z) = A(z— «o)(z— B)(z— y)..., then
F@)=rjc— o) +1/c— B +1/z—y) + .. .50
that if z is close to «, we have

1/Fz) = (z — o)[r + (z — ){1/(x — B)
+ (e —y) + ...} + 0z — «)?]
If now we write f(z)/f(z;) = F; 2.2)
and we have three values of z;, namely z;, z,, z3 then
(2.1) and (2.2) combined give the simultaneous equations
b+cz; +aF,=z;F,i=1,2,3. (2.3)

Hence by solving the set (2.3) for a we obtain an estimate
of «. We can now put z, = a and solve (2.3) with
i = 2, 3, 4, thereby finding a new value of a, and so on.
If the process converges, then a converges to .

From (2.3) we easily find the symmetric formula

_ z1Fi(z2 — z3) + 22F)(z3 — 7)) +23F3(z1 — 25)
T Fi(z;—z3) + Pz — z0) + Fazy — z))
which shows that the value of a is independent of the

order of z,, z, and z;. However, in numerical work, the
use of (2.4) leads to a serious loss of significant figures
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and we do better to compute a as a correction to z;

from the formula

a=z3+ (2, — z3)(z3 — 2 )(F, — F)/{(z3 — 2)(F> — Fy)
+ (21 — z2)(F; — Fy)} (2.5)

If now «, B, y, ..., are the zeros of f(z), then algebraic

manipulation shows that

af{(zy — )(z; — a)(z3 — @)}
_ + Bi(zy — Bz — Bz — B} + - - .
1Az — )z — )(z3 — )}
+ 1[Gz — Bz — B)zs — B} + - ..
The corresponding result when some of the zeros are
repeated is obvious. Hence if we define z; — o = ¢,

i=1,2,3,4, and all the ¢; are small compared with
o« — B, & —y,..., then we see from (2.6) that

a (2.6)

€s = Hee,yeq 2.7
where H is approximately a constant. Difference equa-
tions of the type (2.7) are well known and it is readily
shown from (2.7) that the order of the method is the real
root of the equation #* = #2 4 ¢ + 1, namely 1-839.
Moreover this is true irrespective of whether the root is
simple or repeated.

Again, if z,, z,, z; are all large compared with
o B, v, ..., then

a=(ae+B+y+..0)JA+14+14+..)
@A Bty t.. ) @8

Thus if three estimates remote from the zeros are taken,
the next approximation is located at the centroid of the
zeros. This would seem to be a very valuable property
of the method.

Although the formula (2.5) works very well, we did
in practice introduce two modifications. The first of
these was aimed at eliminating the occasional unfortunate
situation in which the denominator of (2.5) is fortuitously
zero, or very nearly so, and the second improved the
accuracy of the final estimate of «. These modifications
are described in the following section.

3. Theory of the modified method

If we apply the method of (2.1) to finding a zero, not
of f(z), but of Y(z) = f(z)/z", we arrive at the iterative
formula
a =z 3 +

(21— z3)(z, — z3){n(zy — 2)) + 2/ F) — 2,°F5} G.1)
(22 — 2302\ %F; — 22 F5} + (2 — 2)423%F3 — 22°F)
Thus a’ can be computed at the same time as a and
involves no extra evaluations of the polynomial.
Furthermore we may now choose for z, whichever of
a or a’ is nearer zs.

We can show by algebraic manipulation that

B3)(zy — )z, — a)(z3 — @)
v B =BG —BE =By
?/(zy — a)z; — a)(z3 — @) :

+B2(z1 — Bz — B)zz — B) + ...
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It is extremely unlikely that the denominators of both
(2.5) and (3.1) will be simultaneously zero. Hence the
chance of this affecting the iterative process is virtually
eliminated.

We also note that since we have to compute
1/F; = fiz)lf(z),i = 1,2,3, for formulac (2.5) and
(3.1), we can use, at no extra cost, the Newton-Raphson
formula in the form

a’ = Z3 — 1/F3, (3.3)

and take whichever of a, a’, a”’ is the nearest to z3 as
our value of z,. Now when the estimates are very close
to the true value «, the computation of both a and a’
may involve much cancellation and rounding off errors
may be appreciable. These errors will be least in com-
puting a”’ and, if the zero « is isolated, a” will give us
the greatest final accuracy.

Another important advantage of alternative choices
concerns the fact that some iterative methods occasionally
fail in the sense of ‘cycling’ round a series of values of z;
without f(z,) converging to zero. We have observed this
phenomenon with both Muller’s (1956) and Bairstow’s
(1914) methods and also in one instance with our un-
modified method (Section 2). The modified version
(Section 3), however, has not cycled in any of the cases
tried and this is probably due to the fact that, at each
iteration, one of three alternatives is chosen.

4. Generalisation of the method

It is possible to consider a more general form than
(2.1), namely

1FE@) =f@If (2) = (z — a)f{co + 1z + 22> + . ..
+ Ck_zzk—z}. (4. 1)
Here, given the k points (z;, F;),i = 1,2, .. ., k, we solve
the simultaneous equations
aF; + ¢y + ¢1z; + 22 + ...+ 2k 2 = z;F,
4.2)
i=1,2,...k The value of a gives us z,,, and we

then solve (4.2) for i = 2,3,...,k + 1, and so on.
It can be shown that

affzy — )z, — @) . .. (2 — )}

+ Bz — Bz —B) ...z — B} + -

i — D — D ) @3
+ 1z — Bz —B) - (@ — B+ - -
where «, 8, v, . . ., are the zeros of f(z).
The iteration rule is
Zmi1 = Zm + Cmotr1 — Zm)@m-kr2 — Zp) e
@m—1 = Zm)Am, k= 1/Am, & (4.4)

where
Am 1 =F@Zn_1)s Am, 2= Am 1 — Am+1, 15
Ap k2= Cmtc — Zm)Cm—tt1— Zm) - - -
@m-1— Zm)Am—1,k+1
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— Cmk=1 = Zm-1)Z—p—1 — Zmkg1) e -
Cm—k—1 = Zm—DAm, k+1 4.5)

The case k = 2, gives the secant formula; k = 3 gives
formula (2.5); k = 4 increases the order of convergence
marginally to 1-928 but at the cost of some cancellation
of significant figures, increase of rounding errors, a
slightly slower operation, and increase in length of
program.

We decided that, taking all considerations into account,
k = 3 gave the best working form.

5. Operational details

We have to find a set of initial values for z,, z,, z3.
Now, if

f@)=apz"+ayz""'+...+a,_1z+a, (51)

then one zero, at least, has a modulus less than or equal
to
|@qjao|!'" = 5w, say. 5.2)

So we start with —+iw, —w + iw, +2iw. If after
50 iterations we are not near a zero, we restart with
+2iw, —w + 2iw, —w —+ 3iw; and if this fails we take
3 more points inside the circle |z| = 5w, etc. However,
3 real or 3 imaginary values are best avoided as then all
subsequent z; may be real or imaginary. In practice, we
have never failed to find a zero within the prescribed
number of iterations with the first set.

After a zero o has been found, we recalculate (5.2)
for the reduced polynomial f(z)/(z — o) and start with

—w =+ iw, —w + 2iw, & (5.3)

where & is the conjugate of « and all the imaginary parts
in (5.3) have the same sign. Where zeros are in conjugate
pairs this speeds up the process and does so particularly
where there are repeated or clustered zeros.

The initial values z;, z,, z3 can be rearranged in
descending order of |f(z;)|]. This ensures that the z;
with lowest | f(z;)| appears in the first three iterations.

We sign off thus: In single-length arithmetic we con-
tinue calculating f(z;) until |[f(z})| < 10—%|a,|. (We
work on an I.C.T. 1909 computer with a 36 bit mantissa
equal to about 11 decimal places; any number between
0-1 and 1 x 10~°|a,| will probably do. This stage is
usually reached well before the 50th iteration with our

method.) We then continue recording the lowest | f(z;)|
so far obtained until two successive |f(z;)| are greater
than this value. The corresponding z; is taken as the
correct value of the zero. f{(z) is divided by z — z; and
a zero of the quotient is then found.

6. Numerical results

In what follows, the zeros are all given in order of
appearance using our method; the first wrong digit is
underlined and the number of iterations is given in
brackets after each zero.

6.1. Single-length arithmetic
Dimsdale (1948) gave a ‘difficult’ polynomial, namely

25— 3z — (2 + )23 4+ (12 + 5i)z2 — (8 + 8i)z + 4i.
Our method gave the zeros as:

0-0986841135 + 0-4550898606 i (10),
1-0000000000 +- 0-0000000000 i (13),
19999976457 — 0-0000007352 i (22),
2-0000023543 + 0-0000007352 i (5),
—2-0986841135 — 0-4550898608 i (0).

Note that the repeated zero 2 + 0i is only accurate to
6 significant figures, which is all that can be expected
with a double zero in working to about 11 decimal places,
whatever the method. Note also that the second of the
repeated zeros took only 5 iterations (since there are
always 3 starting and 2 signing off iterations this is the
minimum number unless an exact value is found).

Olver (1952), in a survey of desk machine methods,
gave a polynomial of degree 16 with coefficients:

2-03253121, 3-4356048, 25-1783048, 37-651096,
128218748, 66-44768, 345-07256, 378-908, 524-327,
468-88, 443-576, 304-08, 190-68, 89-6, 32-8, 8, 1. Our
single-length results were as given in Table 1.

The first wrong digit (underlined) is obtained by com-
parison with Olver’s (1952) double-length working
results. The average number of iterations per zero is
9-5 and the zeros appear in increasing order of magnitude.

The  polynomial 220 — 20z!8 4 170z!6 — 800z!4
+ 2275212 — 4002'0 4 429028 — 26426 + 82524 — 10022
+ 2 has zeros of the form + a + ib and, although our
first starting values are designed to locate zeros with

Table 1

—0-2935045292 + 0-1434992969 i (17), —0-2935045292 — 0-1434992969 i (5),
—0-2244700578 + 0-4509279583 i (13), —0-2244700578 — 0-4509279583 i (5),
—0-1476237802 + 0-771572012 i (15), —0-1476237803 — 0-7717572013 i (10),
—0-:0900399912 4 1-0611920591 i (12), —0-0900399927 — 1-0611920587 i (8),

—0-0508644189 + 1-2969112793 i (14),
—0-0256687598 + 1-4743771496 i (12),
—0-0104934830 + 1-5962954832 i (10),

—0-0508644117 — 1-2969112805i (7),
—0-0256687720 — 1-4743771429 i (11),
—0-0104934745 — 1-5962954975i (6),

—0-0024892346 + 1-6671203683 i (7), —0-0024892366 — 1-6671203598 i (0)
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Table 2
—0-499972 — 1-322822 i (43), —0-499976 + 1-322827 i (10),
—0-500024 + 1-322924 i (10),
—0-499951 + 1-322899i (8),
—0-500048 + 1-322852i (9),
—0-499988 + 1-658243 i (8),
—0-499930 + 1-658324 i (10),
—0-500012 + 1-658382 i (10),
—0-500070 + 1-658300i (0).

—0-500028 — 1-322929 i (13),
—0-499947 — 1-322904 i (18),
—0-500053 — 1-322848 i (9),
—0-499993 — 1-658240 i (39),
—0-499928 — 1658319 i (14),
—0-500007 — 1-658385 i (12),
—0-500072 — 1-658306 i (7),

negative real parts, no more than 19 iterations were
required for any zero, the average being 10-9. The
zeros are not stated here but were correct to 10 significant
figures on single-length working.

6.2 Double-length arithmetic

The polynomial with factors (z22+z+1), (z2+z+1-01),
(z2 4+ 1-01z 4+ 1), (z2 + 1-01z 4 1-01) has zeros which
form two conjugate ‘clusters’. The largest error in a
zero found by our method was 28 X 10—!5 and the
number of iterations for the eight roots were 36, 10, 15,
8, 21, 10, 7 and 0.

An ill-conditioned polynomial given by Olver (1952)
and quoted by Wilkinson (1959, p. 168) has coefficients:

1250162561, 385455882, 845947696, 240775148,
247926664, 64249356, 41018752, 9490840, 4178260,
837860, 267232, 44184, 10416, 1288, 224, 16, 2. Our
method extracted the roots in the same order as Wilkinson
obtained by Bairstow’s method; our errors X 1017 were:

0+ 0i, 0+ 0i;
— 15 + 276i, + 20 —  100i;
— 7521 — 16155i, — 4051 + 5114i;

— 222306 + 186244i, —290481 — 56137i;
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