An empirical estimate of the relative error of the computed

solution x of Ax=05b

By G. Loizou*

An empirical method is described for providing, with a minimum of effort, useful estimates for the
relative errors in individual components of the computed solution ¥ of the system of linear equations
Ax = b. The estimate for the error is in no sense a rigorous upper bound, but in view of the
economy of effort it is felt that extensions of the method described here provide a valuable addition
to known methods of a posteriori error analyses.

(First received June 1967, and in revised form, September 1967)

1. Introduction

The problem to be discussed in this paper is that of
estimating empirically the accuracy of the computed
vector X, obtained in the solution of

Ax = b, (1)

where 4 will be assumed to be an n X n non-singular
matrix. The computed solution can be effected by either
a direct or an iterative method. Here attention is given
to the direct method of Gaussian elimination which has
been studied extensively by Wilkinson (1963 and 1965).
As is often the case the matrix 4 is very or fairly ill-
conditioned and the computed solution % is a poor
approximation to the true solution. The reason for this
is attributed to the accumulation of rounding errors,
cancellation and the ill-conditioning of the matrix A.
The accumulation of rounding errors has been studied
(see, for example, Wilkinson, 1963 and 1965) by using
the elegant technique of backward error analysis in
floating or fixed-point arithmetic. However, once a
computed solution X is obtained one would like to
know approximately the accuracy. In this paper a
practical method is developed which gives component-
wise estimates of the accuracy of the computed solution
x. It must be emphasised that the experimental relative
error obtained by the empirical method described in
this paper is not an upper bound of the actual relative
error in the computed solution; it does, however, give a
good approximation to the order of magnitude of the
actual relative error. The method, as it will be seen,
was applied to very ill-conditioned matrices and the
results have been fairly good. Tables are given for
various matrices and, as is shown from the ALGOL
procedure of the method, almost no extra computing
time is required to ascertain the accuracy of X, since
most of the quantities needed to estimate it are obtained
progressively in the various stages of the elimination
method for solving (1).

2. Description of the method

If A4 is a non-singular matrix then, in general, it can be
factorised in the form 4 = LU, where L is unit lower
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triangular and U is upper triangular (Gaussian elimina-
tion). The factorisation, when it exists, is unique.
Denote the initial set of equations by Aox = b°. The
factorisation which is performed in # — 1 major steps is
equivalent to premultiplication of A, by elementary
matrices M;, i = 1(1)n — 1, where the ith step is given by

A;=MM, ... M\,M;Ay, = P,A,,
i=1\n—1,P,_y =L 'and 4, ;= U.
The forward substitution, which gives Ux = L—15°,
is similarly equivalent at the ith step to
b=MM, {... M\Mb° = Ppb°,
i=11)n — 1,and b"—1 = L—15°.
The backward substitution gives progressively the

computed solution vector X, whose components X,
r = n(— 1)1, are given by

L u.y

Xy = u ’r:n(_ 1)1,

rr

where

U= (_ Up pits —Up pp2s e ooy —Upy b:-l_l)T’
y= (xr+l’ )?,+2, vy X l)T’
and uT denotes the transpose of .

Having considered the above structure of the solution
of (1), an empirical method is now devised for computing
the component-wise relative loss of accuracy of the
computed solution vector x. Define

u
P, = Tallx"“agg » o r=10m
i=0(1)r—1
. ”(ur r+1s u, r+42s ¢ urm Lr—lbO)” r = l(l)n
= “max {[@Pyr, 62z, - %, B ’
i=0(l)r—1
where a2 = u, ., =0, L7 !. denotes the r throw of
the matrix L~!, the underlying norm |[|.|| being the
euclidean vector norm, and
|u.y|
= airitymr 71O

REMARK. The quantities p,, ¢, estimate respectively Fhe
loss of relative accuracy in the rth pivot and the remaining
part of the rth pivotal row.
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Linear equations

A quantity ¢z, is defined progressively (as the elements
of %, %, r=n(— 1)1, are computed in the backward
substitution) in the following way:

[1 -+ (rel. loss of acc. (¥,))*> + . ..
-+ (rel. loss of acc. (%, ))?]'/2

n+1—r

Xpy1=0,r=n(— DL

t, =

where
The relative loss of accuracy of (u.y) is defined by
w,=4q, X s, X t, r=1(1)n,
whilst that of x, is defined by the quantity 4,, where
h,=p, X w,,r=1(1)n,

provided p, X w, > 10 x 2—¢ 2—* representing the
least significant digit in the word of a binary digital
computer. If, however, the above side condition is not
satisfied then A, = p,, if p, <w,; otherwise h, = w,.
In such a case it seems more appropriate that #,=0-1Xp,
orh, = 0-1 X w,, since in either case w, or p, must have
some bearing on the evaluation of 4,.

Finally, the quantity 4,, namely the measure of the
relative loss of accuracy of %,, should satisfy

@

In the ALGOL procedure that follows no pivoting
has been used and consequently the process can break
down even when A4 is very well-conditioned: for example

0 01
A=1|1 0 Of.
010

Even more serious (because it happens far more fre-
quently) it may be numerically unstable when A is well-
conditioned: for example

e 1
=5

where e = 0(10~19). In fact the process is unnecessarily
unstable whenever a principal submatrix of A4 is much
more ill-conditioned than A itself. These ‘unnecessary’
failures and instability may, usually, be avoided by
partial pivoting (see, for example, Wilkinson, 1963 and
1965).

Nevertheless, the emphasis here is not on the solution
of (1), but on the empirical computation of the com-
ponent-wise relative loss of accuracy of X. Certainly
one can easily introduce partial pivoting into the pro-
cedure following closely the algorithm given by Bowdler,
Martin, Peters and Wilkinson (1966).

h, X (relative error (x,)) = 27, r = 1()n.

3. ALGOL procedure
Formal parameter list:

n order of the matrix A.

a elements of the matrix A4 stored as n X n array.

b elements of b stored as nx 1 array.

h elements of the computed relative loss of accuracy of
X stored as nx 1 array.
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procedure solve G (a,b,h,n); value n; array a,b,h; integer n;
comment Solves Ax=b. The unsymmetric matrix, A, is
stored in the nxn array ali,j], i=1(n, j=1(1)n, b is
stored in the array b[i],i=1()n. The decomposition
A=LU, where L is a unit lower triangular matrix and U
an upper triangular matrix, is performed and overwritten
on A, omitting the unit diagonal of L. The solution vector
is overwritten on b, whilst the computed relative loss of
accuracy is stored in the array h[i], i=1(1)n. The method
will fail if A, modified by the rounding errors, is singular
or if the pivot is zero or almost zero, since no pivoting
(whether it be partial or total) is used,;

begin array e[0: n], k,l,u,w,d[1: n]; real m; integer i,j,r;
for i := 1 step 1 until » do
begin u[i] := abs(ali,i]); m := 0;
forj := i-+1step 1 untilndo m := m+-a[i,j] X ali,j1;
k[i] := sqrt(m-+b[i]1x b[i])
end;
for r := 1 step 1 until n—1 do
for i := r+1 step 1 until n do
begin a[i,r] := ali,r)/a[r,r]; bli] := blil—ali,r]xb[r];
m:=0;
for j :=i+1 step 1 until n do
begin afi,j] :=ali,jl—ali.r]x alr,j];
if j>i then m :=m--ali,j] X ali,j]
end;
m := I[i] := sqri(m-+>b[i] < b[i]);
if k[i{]<m then k[i] := m;
m := abs(ali,i]);
if u[i]<m then u[i] := m
end; /[1] := k[1];
for i := 1 step 1 until n do
begin m := abs(ali,i]);
u[i] := if m<<u[i] then m/u[i] else 1;
k[i] := if I[i]<<k[{] then I[i]/k[i] else 1
end;
for i := n step —1 until 1 do
begin m := b[i]; if i“n then
for j : =i+1 step 1 until n do m := m—ali,i]xb[j];
d[i] := abs(m); bli] := mjali,i];
m:=1;
for r := i1 step 1 until #n do m := m-+b[r] X b[r];
d[i] := d[i]/(I[i] X sqrt(m))
end;
e[n] i =1, m:=1;
for i := n step —1 until 1 do begin
wli]:=k[i] x d[i] x e[i]; if w[i] X u[i]<<0- 72,o— 11 then begin
if u[i]>wl[i] then A[i]:=w[i] X 01 else A[i]:=u[i] <01 end
else A[i] := u[i] x w[i]; m := m+-h[i] X h[i];
e[i—1] := sqrt(m)/(n—i+2) end
end;

4. Results and discussion

In what follows cond(A4) denotes the condition number
of the matrix 4, namely

cond(4) = lub(4) lub(4=1) = || 4 || || 4~ ||
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Table 1
[ 5-000 2-100 0-050 0-910 0-871 0-030 0-059 0-006 0-871 0-061 0-005 ]
0-560 6-200 0-030 —0-820 0-090 0-073 0-525 0-305 —3-009 0-561 0-003
—2-000 0-050 6-800 —0-005 0-008 0-012 0-053 0-007 0-623 —0-192 —1-520
3-100 0-003 0-059 7-300 0-053 —0-092 —0-059 0-001 0-007 —0-003 2-250
4-200 0-058 0-067 0-003 8-900 0-562 0-923 0-005 0-010 0-050 —0-007
A= 3:200 1-500 0-331 —0-523 —0-008 9-700 0-004 0-001 —0-009 1-500 —0-098
—2-000 0-050 0-060 0-071 0-075 —0-502 10-500 0-002 0-053 —0-100 0-005
1-500 1-600 1-700 —1-800 0-062 —0-065 —0-068 11-700 —2-200 0-050 0-001
0-050 0-003 0-007 0-600 —0-700 —O0-500 0-009 0-012 12-300 —0-300 5-000
1-200 1-350 —0-059 0-350 6-030 —0-570 —0-029 0-635 0-920 13-900 1-000
| —4-300 —0-600 0-052 0-900 0-300 0-800 0-825 —0-920 —5-300 —2-000 14-900 |

b =(13-2450, —2-8925, 2-9930, 28-2870, 29-7075, 38-5690, 34-4875, 38-1775, 79-4180, 97-5050, 49-5855)T.

COMPUTED SOLUTION EXACT SOLUTION EXP. REL. ERROR ACTUAL REL. ERROR

0- 5000000000 0-5 (0-34)10—8 0

1- 100000000 1-0 (0-39)10—° 0

1 - 500000000 1-5 (0-44)10—° 0

2000000000 2-0 (0-11)10-8 0

2- 500000000 2-5 (0-61)10—° 0

3- 000000000 3-0 (0-42)10-° 0

3-500000000 3-5 (0-29)10-° 0

4-000000000 4-0 (0-16)10—° 0

4- 500000000 4-5 0-17)10—° 0

5-000000000 5-0 (0-81)10-1° 0

5-500000000 5-5 (0-73)10—11 0

Table 2 Table 3
A= (ay) = @(+j—1", i, j=1(1)5 (Hilbert matrix of A=L"'HL, H=(hy)=(G+j— DY, i,j=1(1)6.
order 5). b = (38-43333333, —6-933333334, 2-307142857,
b=(,1,1,1, DT —1-069841270, 0-6126984129, —0-4038961034)7.
OLUTON ~ SOLUTION  ERROR  REL. ERROR COMPUTED  EXACT = BXP.REL.  ACTUAL
5-000000730 5 (0-13)1077 (0-15)107¢ 0-9999999575 1 (0-66)10-% (0-42)10-7
6-000635130 6 (0-10)10—2 (0-11)10-3
in the case of symmetric norms. In particular, if the

underlying vector norm for the lub norm is the euclidean
(2-norm) norm, then cond(4) = o,/0, or cond(A4)
= |A{|/|A4], if 4 is Hermitian (symmetric for the real
case), where

01> 0,>...>0,>0and [A| > |A)| > ... > [A,|>0

are the singular values and eigenvalues of A4 respectively.

|A4| denotes the matrix whose elements are the absolute 1 0 0 o0 o0 O
values of the elements of the matrix 4. Also, whenever —1 1 0 0 0 0
0 appears in the column ‘Actual Rel. Error’, it is inferred 1 =2 1 0 0 0
that the actual relative error is bounded by 2-7, and for L-1'=| —1 3 -3 1 0 0
the Atlas computer on which the calculations were per- 1 —4 6 —4 1 0
formed, 2—7 = 2-37 = (7-275957614)10~12, taking into —1 5—-10 10 -5 1

E
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consideration the ‘noise-level’, although the mantissa on
Atlas has 40 binary digits including the sign digit.

Table 1 is for a well-conditioned matrix, whilst
Tables 2 and 3 are for very ill-conditioned matrices. In
particular, Table 3 is for the Hilbert matrix of order 6
pre- and post-multiplied by
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and Table 4
1 0 0 0 0 0
1 1 0 0 0 0 b1 L 1
1 2 1 0 0O O 1 9:9 99-8 999-7

L= 1 3 3 1 0 0 A= 99-8 9999-9 999999-8

14 6 4 1 OJ 1 999:7  999999-8 9999999999
1 5 10 10 5 1

respectively. Table 3 illustrates the well-known result b = (10, 4319, 4030199-5, 4003001999-4)T.

that a small residual vector, in this case (0-0000000000,

—0-0000000001, —0-0000000000,  0-0000000000,

—0-0000000000, 0-0000000000), does not necessarily COMPUTED EXACT EXP. REL. ACTUAL
imply a highly accurate computed solution vector X. SOLUTION'  SOLUTION ERROR REL. ERROR
On the other hand Table 4, again for a very ill-conditioned 0-9999999353 1 (0-13)10-8  (0-65)10-7
matrix, illustrates the fact that a large residual vector, 2-000000072 2 0-24H10-7  (0-35)10—7
in this case (0- 0000000000, 0-0000000000, 0-0000610352, 2-999999993 3 (0-82)10-8  (0-23)10-8
0-0312500000), does not necessarily imply an inaccurate 4-000000000 4 (0-92)10- 11 0
computed solution vector X.

In conclusion, the method is obviously more empirical
rather than mathematical in the strict analytic sense. It
must be emphasised again that the experimental relative
error is not an upper bound of the actual relative error
in x; it does, however, give a good approximation to
the order of magnitude of the actual relative error. The
tables given are only a small cross-section of many more
examples that have been tested and yielded, in general,
good results for the computed (experimental) component-
wise relative error. The results appear to be more useful

provided || A=! || || 64 || < 1, which give upper bounds
for the relative error in terms of the condition number
and the relative residuum for (3) and in terms of the
condition number and the relative pertubation for (4).
More important, the method does not require either the
computation of the condition number or the residual
vector or upper bounds for |84|.

than those obtained from the usually quoted formulae Acknowledgements
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| x—A7b]|
|4~ ||
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