SPECOL—A computer enquiry language

for the non-programmer

By Bernard Smith*

This paper describes a new Everyman’s Enquiry language for use with Computers. The language
is usable on almost any file merely by the changing of a few look-up tables and other data in a
small reserved area of the program. Examples are given showing the language in use on three

types of file; files differing in both form and content.

The paper concludes with a summary

of the advantages that are foreseen in the general field of direct customer to computer access.

(First received December 1967, and in revised form March 1968)

SPECOL is a Special Customer Oriented Language
which may be learned in a few minutes of study and
may be and is being used by people who have no
experience of conventional computer programming or
of computer techniques. Users moreover need have
no knowledge of the medium (disk, drum, magnetic
tape, etc.) on which their data are stored.

The language was written in the United States for
IBM 7010 and System 360 Computers. The basic
compiler program is written in the machine codes of
both computers and at present requires less than 25,000
characters of storage. It could probably be written for
other ranges of computer in the matter of a few months.
The language has been used successfully on numerous
files, some of them exceedingly large—over several
millions of records. Especially important is the speed
and ease with which questions can be put to the computer
and the quick turn round in jobs that can be expected.
A search through a million records of a typical file,
written 800 bits to the inch and blocked in 40-line blocks,
takes about 15 minutes on an IBM 7010. Time on
System 360 depends on the particular configuration in
use and on the amount of parallel processing going on
at the time.

General concepts

The first aim of the language is that, within the
vocabulary allowed, it should be as natural to the user
as possible. This has been done by allowing the user
to make his own selection of nouns for the language
and thereafter by keeping other terms to a minimum.
The principal connectives in the language are AND, OR,
and NOT. These plus a few simple conventions enable
quite complex questions to be put to the computer and
make the use of other words unnecessary.

The second aim of the language is that it should be
usable on any file, irrespective of its country of origin,
content, or structure. This has been achieved merely
by viewing information as falling naturally into a series
of sets or nested sub-sets of data, which are then

* 28 Queens Court, Queens Road, Cheltenham, Glos.

addressed and combined according to logical laws.
Instead of re-organising the basic data into structures
and then designing a language to match these structures,
it is possible to leave the data as it is and manipulate it
using only ANDs, ORs, and NOTs. The user, although
he may not be aware of it, is following some elementary
Set Theory and the language itself is in fact a complete
Algebra of Sets. Users of the simplest files need not
be aware of all conventions in the language, but in any
case it is a very easy step from the simplest type of
SPECOL to the full SPECOL that can be used on the
most complex of files.

Basic features of the language

The subject matter of the files on which the language
may be used is virtually limitless, ranging perhaps from
scientific and technical indexes to historical or geo-
graphical data, political, business, management files,
marketing data, inventories, police and personnel
records, car registrations, hotel guides and even menus
for the housewife. It is possible, though this would be
at some cost in efficiency, to use the language entirely
on natural text.

Variable features of files, that is, features that may
differ between one file and another (data identification,
field names and other characteristics) are catered for in
SPECOL in a small Control section of the program.
The information necessary to complete this part of the
program is worked out with the customer, usually in
the matter of a few minutes, when he first decides he
wants to use SPECOL on his file.

Files may consist of single-line records, multiple line
records, or even records which can only be described
in terms of paragraphs and sentences, i.e. in terms of
sets and sub-sets of lines. Lines may be of any length,
though for any one file will be fixed at a maximum.
The form and content of lines may differ depending on
some identification (usually a tag or some other criterion)
positioned in a known place of the line. Searches may
be made within or between these lines or subsets of lines.

[Mr. Smith is a Civil Servant employed in a Government Research Establish-
ment. The SPECOL project has the support of the Treasury and several other Government Departments.]

© Crown Copyright

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

SPECOL

For example a user may specify whether he wants to
find the two words Nuclear and Reactor (a) next to each
other, (b) within one sentence, (¢) within one paragraph
or (d) merely anywhere in a record.

Records may be generally of any length, i.e. any
number of lines. If the output from any individual
record is likely to be large, say more than 20,000
characters, it is possible, with some computer configura-
tions, that special provisions may need to be made.

Fields in a record may be of any length, though for
any one particular field its length must be fixed. Fields
may be assigned any name beginning with a letter. The
Field Names form part of the Control section referred
to above.

Data items (Search data) are indicated quite simply in
parentheses following the relevant Field Name. For
example, if we want all Captain and Major SMITHS in
WASHINGTON who weigh less than 180 Ib, and are
in the age range 25 to 30, but are not taller than 6 feet,
we could write

RANK(MAJOR OR CAPT) AND NAME(SMITH)
AND PLCE (WASHINGTON) AND WGHT (< 180)
AND AGES (25 TO 30) AND NOT HGHT (> 6)

If we are merely testing for the existence or non-
existence of data in a field we may omit the parentheses.
For example, if we are looking for records which have
names but not ranks, we could write simply:

NAME AND NOT RANK

Again (assuming, of course, that our data is in our
file to begin with) if we want a list of towns in the
UK or US that have a population of more than 5,000
but no doctor, we can write:

CTRY (UK OR US) AND TOWN
AND POPN (> 5,000)
NOT PRFN (DOCTOR)

At present, SPECOL statements are punched on
standard punched cards, but could just as easily be
entered remotely from a computer console or terminal.
Statements may be punched anywhere within the 80
positions of a card. If a statement requires more than
one card, this may be indicated by a space (blank coding)
followed by a continuation symbol. Blank codings in
a statement are ignored by the compiler except in three
instances:

(1) There must not be a space within either a field
name or a data item. If a space is genuinely
required, it must be punched as a slash, e.g.
PLCE (NEW/YORK).

(2) There must be at least one space before and after
the connective OR and the connective TO when
used within parentheses,

122

e.g. NAME (JONES OR SMITH)
*TIME (1200 TO 1400 OR 1800).

(3) There must be a space before a continuation
symbol.

In all other cases, spacing is entirely at the discretion
of the user. He may if he wishes use it for tabulating
his statements. This is especially effective in long
requests which contain similar statements. The main
advantage of the feature, however, is that unless one is
tabulating one does not have to worry about accidentally
tapping the Space Bar.

An especially useful feature in the language is the
so-called wuniversal character or dot feature. A dot
within a data item indicates that any character is per-
missible in that position. If the dot is also the last
character in the data item, it indicates that any character
is permissible from that position up to the end of the
field. For example, the expression

NAME (SM.T.)

would retrieve SMITH, SMYTHE, SMITHSON,
SMITHSONIAN, etc. There are numerous advantages
to this capability. The following are the more important.

(1) It caters for errors and variants, e.g. if a man’s
name may be HANSEN or HANSON, we may
write HANS.N and cater for both.

(2) It caters for hyphenated words, sometimes a
problem in retrieval, e.g. Multi-access, Stand-
alone, Time-sharing.

(3) It enables one to expand the specific into the
general. For example if ACS is the notation for
American Cargo Ships, and APS for American
Passenger Ships, then A.S will stand for all
American Ships,

MBS9 = Men’s Black Shoes size 9
MCS8 = Men’s Brown Shoes size 8
M.S. = Men’s Shoes.

The final dot limits the length of data to be com-
pared, thus saving punching or writing-out time.
It also reduces the need to have variable length
fields in a record, since a field may now be padded
out to a maximum agreed length without fear of
using additional computer time. Fields are auto-
matically reduced in the computer process to the
length of the data item concerned.

@

There are the usual capabilities in the language for
extracting values: less than (<), greater than (>),
equal to (no symbol), and anything but (—), as well
as for indicating alternatives and ranges. There is
also a capability of searching the last positions of data
items. For example, if one is not sure of a person’s

* Note the mixture of TO and OR connectives. The TO has
the closest relationship in such cases; the expression being inter-
preted as TIME (1200 TO 1400) or TIME (1800). There may be

up to 20 ORs or TOs in any one set of parentheses and up to
20 ORs or ANDs between Field Names.

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

SPECOL

name but vaguely remembers the end of it, one may
write:

NAME (@ ITH)
NAME (@ IT. OR @ N.ON)

The symbol @ indicates ‘Search the end of the data
item for . ..

A field area may be scanned in all positions by using
the Query symbol (?). For instance, to scan a Remarks
field for the word TRAVEL or configuration S.IT.SON,
we may write:

RMKS (? TRAVEL OR S.IT.SON)

Another useful feature is the capability of ignoring
leading blanks or zeros in a field. Often items in a
field may begin with insignificant blanks or zeros or a
mixture of both. These can be ignored for matching
purposes by prefixing the data item with a colon (:)

e.g. NUMB (: 123 OR :4567)
DLRS(: < 500.00)
ADRS(: 123. OR :7890.)

There is an added subtlety here. If there is no dot
following the item, this means the item is to be right-
adjusted: that is right up against the right end of the
field. If there is a dot, this means that the data may
‘float’. In the last example, both bb001234 and bb789012
would be matches. Note that the colon may also be
used in conjunction with other SPECOL symbols < , >,
and dot etc.

A further feature of the language is the ability to use
fictitious field names to initiate specially written routines.
For instance, in SPECOL the field name DAOW is
used to calculate the Day of the Week for any day in
the 20th Century. On recognising the Field Name in a
request the program will automatically jump to a routine
and do the necessary work. In this way, ages might be
calculated from birthdates, interest from principal,
periods of activity from up and down times, and so on.

A judicious combination of the features described
above should, it is believed, enable a user to reach any
required part of his file, as well as perform some of his
specially required chores. Among the latter, the most
useful so far incorporated is the ability to make inde-
pendent over-all counts of further classes and sub-
classes of items occurring in the selected records. The
whole range of the SPECOL functions is available for
this purpose. An example of the feature is given in the
second hypothetical question described below.

Instructions to print out the results of a search may
be specified quite simply and with considerable flexibility.

Examples: (1) CTRY/TOWN/POPN
(2) 5/NAME///PRFN/SEXX STAT

It is merely necessary to write down the name of the
field(s) from which one wants data. A single slash
between Field Names indicates one space required; two

123

slashes, two spaces and so on. No slash means no
space required between the fields (e.g. SEXX STAT
above); a figure before the slash is yet another way of
indicating spaces.

Model files and some hypothetical questions

Three levels of file complexity are discussed below.
The hypothetical questions on the files illustrate how
SPECOL deals with them.

(1) Files with single-line records

These are the simplest files. Each line is of the same
length and identically structured. Let us assume a file
of Vehicle Registrations of which the following are
some of the fields and field names,

REGN Registration MFGD Manufacturing date

MAKE Make EXPD Expiry date

COLR Colour NAME Name of owner

BODY Body ADRS Address
TOWN Town

Now let us suppose we want the owner of a Blue or
Gray Hillman Saloon dated about 1946 to 1948 “with a
Reglstratlon number which ends in 25 or 1 somethmg
35. The following SPECOL program would find and
o_utput the relevant records.

MODE 1 SPECOL 1.1

TYPA COLR (BLUE OR GR.Y) AND MAKE
(HILL)

AND BODY (SAL.) AND MFGD (46. TO 48.)

AND REGN (@ 25 OR @ 1.35)

PNTA REGN/COLR/MAKE/BODY/MFGD

AND NAME

AND ADRS/TOWN

OUTPUT

JAD 2125 BLUE HILLMAN SALOON 460601

JOHN K SMITH

41 NORTHWEST AVE TEWKESBURY

DAD 1835 GREY HILLMAN SALOON 470901

JACK ~ P~ JONES

59 WESSEX ST STRATFORD

The first statement in all SPECOL programs is a
Mode and Title statement. The Mode No. is con-
cerned with output and with this simple type of file will
always be 1, indicating that output is to come from the
one and only line of the selected record. The Mode No.
is followed by an arbitrary Job Name. This serves as a
cross reference between the computer log and the output
results. It is entirely up to the user what he puts in this
space. The computer log contains details of number of
records searched and found, amount of output etc.

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

SPECOL

The second statement begins TYPA which introduces
the Search section, and again with this type of file will
always be TYPA. Additional statements in the section
always begin with AND or NOT. Each statement
refers to a group or set of data, i.e. this set of conditions
must be satisfied before the program proceeds to the
next statement.

Note the dot in GR.Y in case the word was spelled
GRAY or GREY. HILLMAN, SALOON, and the
dates are abbreviated to save time. The end of the
Registration number is found by using the @ sign.

The OQUTPUT section begins with PNTA and each
new statement causes output to begin on a new line.

As another example, the following program will find
cars registered in Birmingham, Bristol or Manchester,
dated before 1957, but excluding Yellow Rolls Royces
or Black Bentleys. Out of the selected records it will

also count (1) the number of 1945 to 1950 cars, (2) the
number of 1951 to 1956 cars; (3) cars coloured BLUE
or RED (one class), (4) FORDS and (5) AUSTINS.

MODE 1 SPECOL 1.2
TYPA TOWN (BIRM. OR BRIST. OR MANCH.)
AND MFGD (< 57.)

NOT COLR (YELL) AND MAKE (ROLLS.)
OR ¢
COLR (BLACK) AND MAKE (BENT.)
PNTA TOWN
AND REGN
AND 10/COLR/MAKE
OVCNT MFGD(5. TO 50.) (51. TO 56.) COLR
(BLUE OR RED) ¢
MAKE (FORD) (AUSTIN)

OUTPUT
BIRMINGHAM
AOC 193

GREEN AUSTIN
BRISTOL
PH 2147

BLACK FORD

COUNT TOTALS
350 MFGD 45. TO 50.
800 » S1. TO 56.
420 COLR BLUE OR RED
150 MAKE FORD
210 AUSTIN

Note the use of OR between Fields. Alternatives must
appear in the same statement though it is permissible to
continue statements over more than one request line by
using the ¢ Continuation symbol. It is usually a good
idea to factor out the common data (i.e. TOWN and
MFGD) and write this first. The NOT of the NOT
statement extends over the entire statement. This is
true only when the NOT is the first term of a statement.

124

Note the 10/ in the third output statement which causes
the output to be indented 10 positions.

The counts are self explanatory, although in fact
other by-product counts not explained here are also
produced automatically by the program.

(2) Files with Headers and Trailers

A slightly more complex file is one that consists of
records containing a Heading line (called a Header) and
subordinate lines (called Trailers). The trailers are all
of the same type and structure:

Header

Trailer

Trailer

Trailer

Let us consider a file of World Computer Centres and
their personnel, from which we will select the following
fields and field names;

Heading field
CTRY Country
CENT Centre
SVCA Services offered: Analysis
SVCO Optical scanning
SVCR Remote access
Trailer fields
NAME Full Name TITL Title
FNME First Name STAT Status
INIT Initial SLRY Salary
SNME Surname JOBD Job Description

Even in using this file, if the search and output state-
ments concern only Heading data, then the procedures
are exactly as shown in the previous examples. If,
however, the program in some way also concerns trailers,
it becomes necessary to use some additional conventions.
Firstly there are additional MODE Numbers. MODE 1
indicates that only Heading data is required for output;
MODE 2 that only those trailers containing matched
data are required; and MODE 3 indicates that all
trailers of a selected record may be required for output
even though some of the trailers do not contain any
part of the match. Secondly there are additional search
and output terms. TYPB introduces the Trailer Search
section and PNTB the Trailer output section. Let us
assume that we want a list of Married Engineers or

Single System Analysts working at UK Computer centres

which have Remote Access facilities as well as Optical

Scanning. The following program would suffice;
MODE 2 SPECOL 2.1

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

SPECOL

TYPA CTRY (UK)
AND SVCR AND SVCO
TYPB STAT(M) AND JOBD(ENGR) OR
STAT(S) AND JOBD(SYSA)
PNTA CTRY/CENT/SCVR SVCO
PNTB STAT/JOBD/NAME
OUTPUT
UK LONDON UNIVERSITY RO
T M ENGR JAMES P SMITH
S SYSA WAT A PERUSAL
S SYSA ANN A LYZER
UK BRISTOL IBM RO

S SYSA IMAN X PERT
M ENGR JOHN T JONES

Mode 2 has caused only those lines containing matched
data to be output. Parentheses are not necessary with
SVCR and SVCO since any data in these fields means a
match. Note that what follows the OR in the TYPB
statement is a complete alternative to everything that
precedes it in that statement. In the output no space
is required between SVCR and SVCO, hence the omission
of the slash. Trailer output is automatically indented
the length of the Heading unless otherwise indicated.

For a second example let us write a program to list
all unmarried programmers with salaries between £3,000

and £4,000 per year, and let us assume in order for the

output to be sorted later into Name order, that the
output is required in single lines:

MODE 2 SPECOL 2.2.
TYPB NOT STAT(M) AND JOBD (PROG)
AND SLRY (: 3000 TO : 4000)
PNTA+ CTRY/CENT
PNTB STAT/JOBD/SLRY/NAME
OUTPUT

UK LONDON IBM S PROG 3500
RICHARD S JONES T

UK LONDON IBM S PROG 3200
HAZEL T GREEN -

UK LONDON IBM S PROG 3000
JOHN P WHITE -

FR PARIS GE S PROG 3300
RENE S DUPONT -

Note that no Search is required of Heading fields so
the first Command Term is TYPB. Since the NOT is
not the first term of a statement it applies only to the
immediately following field. SLRY is a right-adjusted
field, hence a colon will cause any leading blanks or
zeros to be ignored. The + after PNTA causes Header
and Trailer output to appear on the same line. Heading
data is repeated as necessary. Output may now be
sorted by Name.

125

A common request with this type of file is that of
stipulating the presence of one condition in one trailer,
another condition in a second trailer and so on, all
conditions to be satisfied for the record to be required.
This is sometimes called Cross-Trailer-working, and so
the SPECOL term for this in TYPBX.

Let us assume we require from a file the name of the
centre that employs three people one named MISS

HELPHER, the second MR. COUNTWELL and the
third MR. PERT. We are not interested if only two of
the three are present.

MODE 2 SPECOL 2.3
TYPBX SNME (HELPHER) AND TITL (MISS)
AND SNME (COUNTWELL) AND TITL (MR)
AND SNME (PERT) AND TITL (MR) ~
PNTA CTRY/CENT T

PNTB 7/TITL/NAME/JOBD

OUTPUT
UK BRISTOL IBM -
MISS TRULY A HELPHER SEC
MR WILL I COUNTWELL ACCT
MR IMAN X PERT SYSA

All three persons are found so the record is selected.
Note that only part of the name (SNME) was searched
for, but that the whole name (NAME) was output.

(3) Files with Headers plus Trailers of different types
and with Trailers also grouped into sets or paragraphs

This is a rather more complex type of file but never-
theless one that is fairly common. Let us take as an
example, an index to technical journals. In this, the
Heading line will contain general information about the
journal, price, publisher, reference, etc. Each article in
the journal will be assigned a serial letter and this will
be the set or paragraph letter. For each article there
will be one or more Trailers and each Trailer will be
tagged with a letter to indicate its contents:

H Header
A Author
Article
S Subject
A
G Gist
A Author
Article
Subject
B
K Keywords

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

SPECOL

The following might be some of the fields:

Heading fields
HDTE Date of Issue HPRD Period
HTLE Title HCTY Country
Trailer fields
ANAM Author’s Full Name KWRD Keywords
ASNM Author’s Surname PNAM Name of Per-
son in Text
ATWN Author’s Town PSNM Surname of
SUBJ Subject Person in
Text
GIST Gist PTWN Person’s
Town men-

tioned in Text

Let us assume that we require a journal containing
articles by Bull of London and O’Flynn of Dublin in

the same issue:

MODE 3 SPECOL 4.1
TYPBX ASNM(BULL) and ATWN(LONDON)
AND ASNM(O’FLYNN) AND ATWN
(DUBLIN)

PNTA (ALL)
PNTB 0/ANAM/SUBJ

OUTPUT
H 641005 SPORTING LIFE MTHY UK
BA BULL JOHN LONDON
BS FISHING IN THE THAMES
EAl O’FLYNN MIKE DUBLIN
EA2 O’'GRADY SEAN CORK

ES IRISH WILDLIFE

In TYPBX working, a single SPECOL statement now
refers to a single paragraph or set—in this case, one
article. In addition, consecutive but different Field
Names with the same first letter refer to the same sen-
tence or trailer (BULL and LONDON must appear in
the same sentence). Note that a whole Header may be
output by using PNTA (ALL). The two articles
extracted are lettered B and E. O’FLYNN and
O’GRADY are co-authors. Although Author and
Subject Field Names appear in the same PNTB state-
ment, output is in different lines. Column alignment,
however, is preserved. Mode 3 was used since S trailers
were required in the output but were not mentioned in
the Search. Paragraph and Tag letters and suffixes are
output automatically.

As a last example let us take a browsing type of query
—the requirement for an article on Physics written in
the summer of 1963 by someone with a name ending in
INGTON or INKTON. The article had something to
do with ALPHA and BETA particles or PHOTONS

126

and possibly contained the keyword QUANTUM.
The author was not English or American:

MODE 3 SPECOL 4.2

TYPA HDTE (6305. TO 6309.)
TYPB SUBJ(PHYSICS) AND ASNM (@ IN.TON)
AND NOT ANTL (UK OR US)

AND KWRD (QUANTUM) OR GIST ¢
(7ALPHA OR BETA OR PHOTON)
PNTA HDTE/HTLE
PNTB 7/ANAM/ATWN
AND SUBJ
AND GIST
OUTPUT

630615 NUCLEAR PHYSICS
CA JAMES P PARKINGTON CORK
CS1 WAVES, PARTICLES OR WAVICLES

CG1 REVIEW OF RUTHERFORD’S
EARLY FINDINGS

CG2 ON ALPHA AND BETA PARTICLES

Summer 1963 is defined as (6305. TO 6309.).
INGTON or INKTON are covered by the dot feature
and a Word-End search. The Query (?) denotes Search
all positions of the field.

Advantages to be gained in SPECOL type working

It is not possible in a single article of this length to
describe all the features either at present in SPECOL or
shortly to be incorporated. What it is hoped the paper
will do is stimulate more interest in this field and illus-
trate at the same time the easy way in which information
in a computer can be addressed and manipulated directly
by the layman.

The fundamental idea of processing information in
terms of sets and subsets of data will it is hoped gain
some ground. Just as the concept of co-ordinate
Geometry with its x, y, z axes did so much to help
mathematics so should the concept of sets and subsets
of data become an essential part of data processing.

The article will also it is hoped bring home more
clearly some of the advantages of direct customer to
computer access. Not least among these is the dispensing
with the services of a middleman in getting a job started,
and the tiresome negotiation this often entails. A
customer now has only himself to blame if he gets the
wrong answer. Other savings are just as important.
Programs may now be written in a matter of minutes
rather than weeks; professional programmers will be
spared writing programs that are 809, the same as
someone else’s; operations staff will save time avoiding
the huge sorts and lists they are now so often called on to
do; and customers will save time by not having to plough
through large lists and prints which are normally the

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

SPECOL

output from the general or ‘canned’ type of program.

Another advantage is the big step that the language
takes towards on-line working. Conversational pro-
gramming would seem to be just around the corner.
Languages of this type will moreover not come in or
be accepted overnight. They will develop and grow, and
SPECOL has been designed with this very much in mind.

Perhaps the most fundamental advantage of SPECOL
is the ease and simplicity with which it may be used by
the ordinary person. Although the language itself is
supported by most rigorous Set Theory proofs and of

necessity follows well defined laws, it has still been
possible to produce a language that contains only a
few conventions and esoteric symbols. The language
has remarkably few parameter or format constraints
and the syntax, if indeed such a term is warranted to
describe its detailed rules of use, can not be said to
differ much from that of ordinary language. That this
can be demonstrated now augurs well for the future of
multi-access and remote enquiry systems on which
business and management are coming more and more to
depend.

The Computer Journal

Published Quarterly by
The British Computer Society, 23 Dorset Square, LONDON, N.W.1, England.

The Computer Journal is registered at Stationers’ Hall, London (certificate No. 24690, June 1966). The
contents may not be reproduced, either wholly or in part, without permission.

Subscription price per volume £4 10s. (U.S. $11.00 at $2.40).

Single Copies £1 5s. (U.S. $3.00 at $2.40).

All inquiries should be sent to the Secretary at the above address.

EDITORIAL BOARD

P. G. Barnes R. G. Dowse
D. V. Blake L. Fox

M. Bridger H. W. Gearing
R. A. Brooker P. Giles

E. C. Clear Hill S. Gill

L. R. Crawley J. A. Goldsmith
G. M. Davis E. T. Goodwin
A. S. Douglas T. F. Goodwin

I. H. Gould T. H. O’Beirne
J. G. Grover E. S. Page

P. Hammersley g Il\é;g}:ri;ne
T. Kilburn P..A. Samet

J. G. W. Lewarne P. A. Spooner
J. C. P. Miller K. H. Treweek
E. N. Mutch H. P. Voysey
R. M. Needham P. H. Walker

F. Yates (Chairman)

Communications: Papers submitted for publication should be sent to E. N. Mutch, The University Mathematical Laboratory, Corn
Exchange Street, Cambridge. Intending authors should first apply for Notes on the Submission of Papers, as the onus of preparing
papers in a form suitable for sending to press lies in the first place with the authors.

Opinions expressed in The Computer Journal are those of the authors and do not necessarily represent the views
of The British Computer Society or the organisations by which the authors are employed.

© The British Computer Society, 1968.

¥20z I4dy 61 U0 1senb Aq 2G€8/€/LZL/2/L L/eIoe/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

