
Sorting almost ordered arrays
By Caxton C. Foster*

This paper presents an algorithm for sorting a collection of items that are already almost sorted.
It is assumed that each item has a sorting key associated with it and that it is desired to arrange
the items so that their keys are in ascending order. If duplicate keys are encountered only the
item associated with the 'latest' occurrence of the duplicated key is preserved, earlier occurrences
being discarded.

The need for such an algorithm is most obvious in the case of on-line record editing in a time-
sharing environment where most of the records or sentences will have been entered correctly, but
occasionally there will be a replacement of an old record or the insertion of new ones into already
entered text.

This algorithm first constructs a table with one entry in the table for each part of the source
text that is internally ordered. It then performs an A'-way merge of the parts.

(First received November 1967)

During the planning stages of UMASS (Unlimited
Machine Access from Scattered Sites), a time-sharing
system for the CDC-3600 written at the Research Com-
puting Center of the University of Massachusetts, it
soon became obvious that one of the most frequently
used system routines would be the one which posted the
changes to the user's program that occur during the
process of debugging. Beginning with a program
retrieved from back-up storage or entered over a teletype
there would ensue a dialogue between the user and the
compiler until an executable version of the program was
obtained, and then between the user and the program
until the results corresponded to the user's expectations.

Typically each interchange would involve one or more
corrections to or insertions into the already present text.
Most of the statements or lines of data would already
be in proper order. In the UMASS system each line
of information (program statement or data) must begin
with a sequence number between 1 and 215 — 1 and the
users are encouraged to number their program state-
ments by tens. Insertion is accomplished by inter-
polation and replacement by entering the old sequence
number followed by the new text. Incoming sentences
are appended to the already present text as they arrive,
and before filing, listing, or compiling a program the
routine called 'Sorter' is entered which will post all the
changes and insertions before giving control to the
appropriate successor routine.

Since Sorter is obviously used with great frequency it
is necessary that it be as efficient as possible. Several
algorithms were considered and the one presented below
seemed to take the maximum advantage of what is
known in advance, namely that most of the text will
already be in order. Because of the pressure of time and
a lack of detailed knowledge about the users' behaviour
no attempt was made to run a comparison between this
and other alternatives.

The method employed is that of an iV-way merge.
First the text is broken up into chunks that are internally

ordered and then these chunks are examined to find the
one whose initial record has the smallest sorting key.
Since the number of chunks in an almost ordered array
will be very much smaller than the number of items in
the array this approach offers considerable improvement
over any method which searches the original array.

In a conventional TV-way merge the discovered item
would be transmitted to the output area or device, table
pointers updated and a new search instituted for the
smallest remaining item.

In the CDC-3600 there exists a transmit instruction
which copies information from one area in core to
another. The overhead for this instruction includes the
initialisation of five index registers and therefore it is
desirable to transmit as large a record at a time as is
possible. Consequently this algorithm is designed to
minimise the number of transmits required and is a bit
more complicated than a conventional merge.

Construction of the chunk table
A coherent chunk is defined as a group of records

(sentences) that lie consecutively in the source area and
have the property that the sorting key (sequence number)
of the {n + l)th record of the chunk is greater than the
sorting key of the nth record for all n. That is: the
records within a chunk are already in the desired order.
Thus the source area shown in Table 1 should be divided
into chunks at the indicated horizontal lines.

The chunk table has four items of information stored
in each entry. These are:

START — the core address of the first word of the
chunk

END — the core address plus one of the last word
of the chunk

FIRST — the sorting key of the first record
LAST — the sorting key of the last record

• Research Computing Center, University of Massachusetts, Amherst, Mass.
University of Edinburgh, 8 Buccleuch Place, Edinburgh.)

134

(Currently temporary Lecturer in Computer Science,

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/134/378390 by guest on 19 April 2024

Sorting almost ordered arrays

Table 1

A typical source area divided into chunks

ADDRESS

1
2
3

4
5
6

7
8
9

10
11
12
13

KEY

10
20
30

5
26
40

30
35
50

50
60
70
80

CONTENTS

Ann
Betty
Estex

Alice
Doris
Gwen

Esther
Francis
Harry

Harriet
Irene
June
Kathy

CHUNK NUMBER

I

II

III

IV

Table 2

The chunk table constructed from Table 1

CHUNK NUMBER

I
II
III
IV

START

1
4
7

10

END

4
7

10
14

FIRST

10
5

30
50

LAST

30
40
50
80

Table 2 shows the chunk table that should be con-
structed for the source area shown in Table 1.

Fig. 1 displays the flow diagram for constructing such
a table.

The merge
Once the table of coherent chunks has been con-

structed it is a relatively straightforward matter to
merge the N ordered strings of records. Fig. 2 shows
the method used.

To begin with the table is searched for the entry which
has the smallest value assigned in the 'FIRST' field.
This entry thus points to the chunk whose initial record
has a KEY value smaller than any other record. This
table entry will be referred to as X. At y we look for
the 'next smallest' key, a table entry Y such that
FIRST (F) > FIRST (X) and for all Z # X # Y:

FIRST (Y) < FIRST (Z).

Should we find a sentence with a key equal to the
FIRST (X) we must remove the older (earlier) sentence

core address of the

sentence being

examined

current chunk nunber

sorting key of the

sentence stared at i

length of the sentence

stored at i

Fig. 1. Construction of the chunk table

from its chunk, updating the table entries appro-
priately. This process is called 'popping up' and will be
described below.

It is of course possible that there is no table entry
which satisfies the conditions on Y. In order for this
to be true, X must be the only remaining entry in the
table. Consequently, chunk X can be sent in its entirety
to the destination area and the merge is completed.

Assuming that we find a Y we compare the LAST (X)
with the FIRST (Y). If the last record in chunk X has
a sorting key smaller than the first record of Y then all
of chunk X has KEYs less than any other records in
the source area, and since the records within a chunk
are by definition in proper order, we can send all of
chunk X to the destination area at once. Having done
this we remove the entry for X from the table, and since
Y now points to the smallest key remaining we put Y
in for X and go back to y.

If the LAST (X) is not less than the FIRST (Y) we
will be able to send only part of X to the destination area
at this time because given this condition we know that
Y contains a record which should be placed amid the
records of X. To discover how much of X we can

135

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/134/378390 by guest on 19 April 2024

Sorting almost ordered arrays

the entry In the chunk table
rith the least PIBST

the entry In the chunk table
with the least FIRST greater
than the FIHSI of X

Fig. 2. The merge algorithm

transmit we set a pointer i equal to the START (X), the
core location of the first record of chunk X. We increase
i by the length of this record and examine the second
record of X. We repeat this procedure until i points at
a record whose KEY is greater than or equal to the
KEY of the first record of chunk Y;

KEY(/)> FIRST (Y).

Now we transmit chunk X through location i — 1 to
the destination area and then update the table entry for
X. If the KEY (i) is greater than the FIRST (Y) we
put Y in for X and go to y. If the two are equal we must
pop up one chunk or the other. Since the table was
constructed from oldest to newest records we can decide
which chunk to pop by seeing whether X is earlier than
(less than) Y or vice versa. If X is less than Y we pop
up chunk X and putting Y in for X go to y. If the
reverse was true we pop up Y. Since the new beginning

of chunk Y is now greater than the beginning of chunk
X we do not substitute Y for X but go directly to y.

Popping up
If two records with equal sorting keys are discovered

we wish to discard the earlier of the two saving only the
latest version of the record. Since this condition can be
detected at several points in the algorithm we use a sub-
routine to accomplish the action. Suppose we wish to
pop up chunk Z. We compare the FIRST (Z) with the
LAST (Z). If they are equal then the chunk Z consists
of only one record (which is to be eliminated) so we
merely remove the entry for Z from the table. If they
are not equal we must update the table entry to indicate
the removal of the first record. Let that record lie at
core location P and have length L.

We set

so that q points to the beginning of the next record and
the

FIRST (Z) <-KEY(?)

Utilisation of core
In order for this algorithm to be at all efficient the

entire source text must be present in core. In addition
to this space we will need an area to construct the chunk
table in. In the UMASS system each entry in the chunk
table requires two 48-bit cells. This is because the
sorting key is 21 bits long and the addresses are 15 bits
in length. Each 'insertion' or 'replacement' will generate
at most one chunk so a space of 200 cells, or 100 entries,
seems adequate for most purposes. The relatively rare
case when there are more than 100 chunks can be
handled by sorting the first hundred into one ordered
chunk and then combining that one with the next 99
and so forth.

In addition to these two areas we have mentioned a
'destination area'. In UMASS this area is equal in size
to the source area and when a chunk, or part of a chunk,
is 'transmitted' to the destination area it is actually
copied into the next free cells of this area, resulting in
one ordered contiguous copy of the text that may then
be written out onto the backing store. The CDC-3600
allows the programmer to 'chain' I/O commands so,
theoretically, all that would need to be present in the
destination area would be a string of I/O control words
that would direct the device controller to do successive
writes from appropriate disjoint portions of the source
area. Unfortunately, the transfer rate of words from
core to the drum is so fast that chaining control words
causes one to miss the next drum location (while picking
up the next control word) and consequently to lose an
entire revolution time for each new control word. A
slower drum or a more sophisticated drum controller
(with control word look-ahead) would thus save the

136

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/134/378390 by guest on 19 April 2024

Sorting almost ordered arrays

time required to copy each word of text from the source
to the destination area and incidentally save most of
the core space used for the destination area.

Note that if control word chaining is used (instead of
copying) it is imperative to have a large enough chunk
table and control word area to hold all the possible
items, since the technique of sorting part of the text and
then repeating the process will not work in this case.

The sorting key
In UMASS the sorting key for each sentence is stored

in a control word at the beginning of the sentence. It
consists of a string number (1-63) and a sequence
number (0-32767), both in binary. A programmer may
have up to 63 separate strings present in his working
space. Each string may be a program, a subroutine, a
collection of data, or whatever he wishes. This permits
him to use the same series of sequence numbers for his
sentences in two different strings without confusion
arising and without having to worry about whether a
subroutine written today can be used in conjunction
with one written last week. As long as they have
different names there is no problem.

To edit one of the strings in the working space, say
one called SMITH, the programmer types NAME
SMITH and all sentences entered until the next NAME
command is given will have the string number associated
with SMITH placed in their control words.

The use of a string number as part of the sorting key
requires a few changes to the algorithm as presented
above. First, in Fig. 1 the test to see if a new chunk
should be started must be changed to read:

Is the string number of this sentence the same as that
stored in the FIRST (J) and is the sequence number
of this sentence greater than the KEY ?

Thus each change of NAME and each insertion or
replacement will generate a new chunk.

In UMASS there is a 'string directory' stored at the
beginning of the source area which holds the names and
numbers of all strings in the source area in the order of
their occurrence.

After constructing the chunk table, the first item in
this directory is picked up and a pass is made through
the merging algorithm (Fig. 2) modified so that the
searches for 'least' and 'next least' consider only chunks
with the correct string number. Once the first string
has been merged the next entry in the directory is
obtained and processed, etc.

This scheme has two further advantages. It makes
the erasure of a string (removing it from the working
space) simple. All that is necessary is to remove the
entry from the string directory and on the next 'sort'
the string will disappear. Second, if the user desires to
rearrange the order in which strings are stored in the
work space he need only re-order the entries in the
string directory. The next sort will then take care of the
re-arrangement.

Conclusions
An algorithm has been presented for sorting and

replacing records for a time-sharing environment. It
takes advantage of the fact that most items will be in
the proper sequence with relatively few insertions or
replacements. It further permits the user to have several
strings in his work space and to work on whichever one
he desires. This algorithm has been implemented on
the CDC-3600 for use in UMASS and is considered to
be fast enough to permit the source area to be sorted
before executing each command, thus simplifying the
system control logic. Details of timing and search
techniques are so highly machine dependent that they
are not presented here.

137

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/134/378390 by guest on 19 April 2024

