A note on compiling display file from a data structure

By N. E. Wiseman*

A display file compiler developed for a particular project in computer graphics is described. It
is designed to operate on a small computer and attempts to compile display files of minimum
length. To this end a mechanism for automatic cataloguing has been implemented which
recognises common substructures and compiles them into display file subroutines.

(First received March 1968)

The use of data structures to represent pictorial informa-
tion began with Sketchpad (Sutherland 1963). As a
graphical communication experiment Sketchpad demon-
strated many of the facilities required for use at a general
purpose interactive terminal, but it required most of the
resources of a very big computer (TX2 at Lincoln
Laboratory) for even a quite simple task, and the
program was in general unable to manipulate application
oriented data. Many experiments, making use of
techniques first exposed by Sketchpad, have since been
carried out with the object of developing graphical
interaction methods as an economical approach to
computer aided design.

In some applications graphical interaction is appro-
priate for only a small (though important) phase of the
design problem and it may be possible to implement the
entire mechanism for this phase on a relatively small and
cheap computer. Other phases of the design problem
may be run efficiently on a larger machine to which the
small computer is connected as a satellite. This approach
is being tried in an experimental computer-aided circuit
design project at Cambridge. Graphical interaction is
for the purpose of inputting and editing data structures
which represent schematic diagrams of electronic circuits.
Building and editing a data structure is carried out
wholly in a small computer (a PDP-7 with Type 340
display) which is attached as a satellite to the Cambridge
Multiple Access System (operating on the Titan, a
prototype Atlas 2). Circuit analysis programs operate
in the Titan on data sent from the PDP-7 and no inter-
action is permitted (or desired!) with the running of the
analysis phase. It is hoped to show that this approach
results in cheap and efficient operation with, nevertheless,

all (or nearly all) of the desired graphical interactive
facilities being present. Although the primary goal is
computer-aided circuit design, it is proposed to attempt
other design exercises in a similar manner, and a suite
of programs known as PIXIE (standing for nothing in
particular) of reasonably general usefulness is being
constructed for the PDP-7.

Data structures in the PDP-7 are generated with RSP
(Wiseman and Hiles, 1968), a ring structure processor
specially designed to operate in a computer with a small
core store. Structures may be built cooperatively by
user programs and by structure generating routines
provided in the PIXIE system. Parts of a data structure
may represent pictorial data and it is the task of the
compiler described in this note to generate a sequence of
display commands (a display file) from such pictorial
data which will produce a corresponding image on the
screen of the CRT display. The data paths are shown
in Fig. 1. The traversing routine scans the source
structure, performs a simple syntax analysis on what it
finds and issues a description of the picture in terms of
points and lines. A name parameter N starts the traverse
from a selected spot. The transformation routine is a
user-supplied subroutine which generates a ‘view’ of.
the picture by scaling, rotating and translating it accord-
ing to the set of 7-parameters. Finally the display code
generator computes how the screen window defined by
the W-parameters intersects this view and generates a
sequence of commands to cause the hardware to display
the result.

Data structures presented to the compiler will generally
comprise pictorial data, built by PIXIE, and user data,
built by the user. Although arbitrarily many element

. Trans- Display :
ot e || Tyersing | formaton (—-| Cote || Distlay
N-Parameters T-Parameters W-Parameters
Source Structure Object Code

Fig. 1. Data paths through the compiler
* University Mathematical Laboratory, Corn Exchange St., Cambridge.

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

Compiling display file
Table 1
Extract of RSP syntax

{relation) ::= son | father
{element) ::= {pixie element}[(user element)
{pixie element) ::= point | line | instance | subpicture
{element relation) ::= {relation) <element>|<element relationd<relation){element)
{path) ::= (element) {element relation)

{data structure) ::= {path)|<{data structure){path
<point relation) ::= isolate|<point relation)father line|{point relation)father instance

{point path} ::= poeint{point relation)
son point son point|(line relationpfather subpicture

(line relation) ::

(line path) ::
{instance relation) ::
{instance path) ::
{subpicture relation) :
{subpicture path) ::
{pixie path) ::

line{line relation)

son subpicture son point|<instance relation)father subpicture
instance(instance relation)

isolate|(subpicture relation) {relation)instance|{subpicture relation)son line
subpicture(subpicture relation)

{point path}|<line pathp|<instance path)|{subpicture path)

{pixie data structure) ::= {pixie path)|{pixie data structure) {pixie path)

types are permitted, only the four types issued by
PIXIE routines are noticed by the compiler, and only
certain relations between these four types cause the
compiler to generate any object code.

The four PIXIE element types are point, line, instance
and subpicture and the extract of RSP data structure
syntax given in Table 1 will indicate the way in which
pictorial data are represented. The definition of a user
element is not necessary in order to understand picture
structures and is omitted in Table 1. User elements
are invisible to the display file compiler.

In RSP the relational features are represented by
rings which associate elements with one another and the
values (properties) are stored in the data areas of their
respective elements. For example, the coordinates of a
point might be regarded as the value of the point and
would then be recorded in its data area, while the fact
that the point was the endpoint of a line would be shown
by a ring connecting it to the element which represented
the line. A ring in RSP may pass through any number
of elements, one (and only one) of which is the ‘owner’
of the ring. The owner is known as the father of all
the other elements on the ring. Each such element is
the son of the owner. The vocabulary word isolate
indicates that the corresponding element can exist
without relational features at all (i.e. no rings pass
through it).

As a simple example of a structure obeying the syntax
above refer to Fig. 2. The notation follows that pro-
posed for the ASP data structure system (Gray, 1967)
in which boxes represent values of elements, and triangles,
circles and lines show the relations between elements.
For our purpose it is sufficient to define the father-son
relation as a path {element){triangle>{circle>{element).

Thus P1 is the father of L1, P2 is the father of L1 and
L2 and so on.

The structure represents two occurrences of a pair of
lines L1 and L2. Tt is interpreted as follows: Two lines

142

P1

S

o
O

—\

L1 L2
P5 P4 S

i 12

Fig. 2. Example of a data structure

L1 and L2 are defined by their end points P1, P2, P3.
The lines are collected together as a single entity into
subpicture S. An occurrence of S is represented by the
instance Il which relativises the internal points of S
(i.e. P1, P2, P3) to the point P4. A second instance of
S relative to another point, P5, is represented by I2.
It will be clear how additional structure could be set
up to represent, say, a subpicture S2 comprising a new
line L3 together with the instances Il and I2. Any
instances of S2 would then carry further point elements

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

Compiling display file

to which all points inside S2 would be relativised. In
this way subpictures can be nested to any depth and
any number of occurrences of each subpicture are per-
mitted. An additional feature is that the position in
space of an instance of a subpicture of arbitrarily many
constituent parts is determined by the single point
element associated with that instance. Moving a picture
part (for example during tracking) is thus accomplished
simply by altering the value of the appropriate point
element and then recompiling the picture.

The traversing algorithm

The compiler is entered with an RSP name parameter
specifying a selected instance element in the data
structure. This parameter identifies a pointer to the
selected instance which is moved over the structure by
the traversing routine. We refer to this pointer as an
M-pointer and to subsidiary pointers which take part in
the traverse as F-pointers.* As the M-pointer moves
over the structure it sends the F-pointers (in a manner
of speaking) on errands to gather information about the
picture. At a point of recursion we can think of the
M-pointer as replicating itself and sending its progeny
on in its place. Different replication schemes yield
different routes through a given structure and hence
different orders of retrieving items of information about
the picture. It has been a particular challenge to dis-
cover a scheme for which the order of retrieval is in
some sense optimal. The design of the display hardware
determines, to a large degree, what constitutes an optimal
sequence and the relevant features of the 340 display,
which are given in the appendix, provide the background
to what follows.

A natural unit of display code is a display file sub-
routine, and since the object is to generate compact
display files the compiler must detect repeated sequences
of display commands and write them as display sub-
routines in consecutive registers of core (no gaps).

Candidate structures for compiling into display sub-
routines are suggested by the picture syntax given
earlier. For example, a particular subpicture element
may have several relationships of the sort

{subpicture relation) : :=(subpicture relation)father
instance

representing the fact that this subpicture is repeated
several times in the picture. Similarly (although less
obviously) an instance element may have several relation-
ships of the sort

{instance relation)::={instance relation)father
subpicture

meaning that several subpictures share the use of this
instance. A subroutine which is used by other routines
has an analogy with a father being ‘used’ by his sons
(to bring them into existence) and thus it seems reason-
able to associate display subroutines both with sub-

* M and Fstand for Mouse and Flea respectively. Ross (1964)
uses the terms in roughly the same way.

143

pictures and with instances (points and lines have been
excluded from consideration because of the relative
simplicity of their compiled form). The formats chosen
for these two subroutines are shown below:

instance, DDS end instance
DIJS instancel
{name of instance)

instancel, DDS (save address)

{invisible vectors to position beam)
{parameter word for scale, intensity &c.)
DJS {subpicture)

{parameter word to set subroutine mode}
DJp

DDS end subpicture

{parameter word to set subroutine mode)
DIJS (instance)

{parameter word to set subroutine mode)
DJS <instance)

end instance,
subpicture,

{parameter word to set vector mode)
vector
vector

{parameter word to set subroutine mode)

end subpicture, DJP
The 2nd, 3rd and 4th words in the instance subroutine
are for the purpose of identifying a lightpen hit in the
display file.t The address of the word carrying the name
is written to core by the DDS and may be retrieved by
the program if a pen hit stops the display anywhere in
the subpicture. The name is a duplicate of the name of
the instance element in the data structure (known as the
atname in RSP). Different save addresses are used for
different levels of instance so that a hierarchy of names is
available to the pen hit routine. The purpose of the
remaining words in the instance and subpicture routines
will be evident. Recall, however (see Appendix), that
the number of vector words required to draw a given
line varies, according to the length of the line, from 1
to 8. The space required for a display subroutine can
therefore only be ascertained when the compiler has
retrieved enough information from the structure to define
fully the length of every line in the subroutine as well as
just the number of lines and calls to other routines.
The compiler is required to write display file directly to
its place in core and it must determine the length, if not
the content, of each subroutine before starting the next
in order to ensure that no gaps are left (positive or
negative) between routines.

Fig. 3 shows the traversing algorithm. An explanation
of its action will now be given.

The routine enters itself (recurses) each time it

+ This method of identifying a pen hit was first suggested by
J. V. Oldfield of Edinburgh University (private communication).

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

Compiling display file

COMPILE

TEST IF NAME
IS O INSTANCE

ERROR RETURN

ENTER TRAVERSE
RETURY
TRA‘IIEBSE

WEITE INSTANCE FILE
INCREASE SAVE ADDRESS
KEEP of (3 POSITIOF BEAM
MOVE M-POINTER T0 SUB-
PICTURE. SET F-POINTERS

INSTANCE

STACK M & F POINTERS |
STACK COORDIFATES
STACK >

E'mu' SUBPICTURE FILE
KEEP ¥ K

ENTER TRAVERSE

h UNSTACK {3
ROT GRHA UNSTACK COOHDINATES
INSTANCE UNSTACK M & F POINTERS [
OR LINE STACK OL
DECREASE SAVE ADDRESS
INSTANCE
LINE PONE
UNSTACK ¢
= WRITE S o IN
WRITE CATALOCUE ENTHY | ‘]
WRITE DDS § 1IN &~ SUBPICTURE FILE
WRITE DJS ¥* IN
EXIT

Fig. 3. Traversing algorithm

encounters an instance element, and exits each time a
subpicture file is completed. An instance subroutine is
written at each entry but the recursions delay the
writing of a subpicture subroutine until all the relevant
data has been collected. The variables a, 8, y and 8
refer to the start of an instance subroutine, the address
in an instance routine where a subpicture is called, and
the start and end of a subpicture routine, respectively.
The two boxes labelled GRHA are GOROUND
routines (Sutherland, 1963) operating on the relational
features of a subpicture element. Every element which
fathers the subpicture is visited and its type and value
are collected by a number of F-pointers. The type is
used to steer the M-pointer as shown in the figure. A
system of cataloguing is provided to shorten the amount
of display file required for a given picture. It makes
use of the fact that some subpicture elements in the data
structure may represent entities within which no struc-
tural detail is needed. In the circuit analysis project, for
example, there is no need to refer at each occurrence of
a resistor symbol to the detailed arrangement of points
and lines which make it up. In such cases a pre-
compiled display subroutine can be provided, to be
referenced from the display file each time the subpicture
is required. Such a subpicture is said to have
been catalogued and three cataloguing actions are
distinguished:

(a) Permanently catalogued. A subpicture element is
permanently catalogued if the structure from which the

144

catalogued subroutine was compiled is no longer con-
nected to the subpicture element. The resistor symbol
mentioned above would be permanently catalogued.

(b) Temporarily catalogued. Any subpicture which
is used in more than one instance should in principle
profit from the cataloguing action and compile into a
subroutine which is called by the several instance
routines. This is in fact done, but since the length of
the display file may alter from one compilation to the
next (if, for example, something is tracking or the
window is moving), entries in the temporary catalogue
are deleted each time the compiler is entered. A tem-
porarily catalogued subpicture thus has a short lifetime,
but is otherwise similar to a permanently catalogued
subpicture.

(¢) Uncatalogued. An instance which is being
tracked may cause an edge violation and then have to
be recompiled as a consequence. When this happens
the particular instance is disregarded by the cataloguing
mechanism and compiled independently. When zoom-
ing or rolling the window through the picture this
uncataloguing action is applied to everything, except
permanently catalogued subpictures. Two data words
in each subpicture element in the data structure are used
to hold, respectively, the catalogue status of the sub-
picture CST, and the entry point for any corresponding
display subroutine, CEP. The wuser initially sets
CST = 10000 for a permanently catalogued item and
CST =0 otherwise. An indicator word, CMK, is
maintained in the compiler to validate the cataloguing
mechanism. A digit in one of the data words in an
instance element causes the compiler to disregard the
catalogue status until the particular instance is completed.

The catalogue is operated as follows. Each time a
subpicture is encountered by the compiler, its CST is
compared with both CMK and a constant (10000). If
equal to either, the subpicture is already catalogued and
CEP is used to give a value for y (refer to Fig. 3). If
not equal, compiling continues and when the subpicture
file is completed y is written to CEP and a masked
version (mask = 7777) of CMK is copied to CST. The
subpicture is then temporarily catalogued. Before
returning control to the user CMK is increased by 1
and masked with a constant (7777) to unset the tem-
porary catalogue in preparation for the next entry to
the compiler. The uncataloguing digit in an instance
causes the compiler to increment CMK until the
instance is completed (the uncataloguing digit is also
reset by the compiler to restore the normal cataloguing
action on the next entry). Global uncataloguing is done
by writing the constant 10000 to CMK before an entry
to the compiler. CST can then only be equal to CMK
for permanently catalogued items. Note that, owing to
the method of updating CMK, normal cataloguing
action is restored automatically for the next entry.

The transformation routine

The repertoire of transformations required in this
routine depends on the particular application for which

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

Compiling display file

(a) 4 rectangle
intersecting
the window

(b) View of rectangle
as formed by code
generstion routine

Fig. 4. View through the window

PIXIE is being used. For this reason it is at present
not part of the compiler but is supplied by the user as
required. It is entered once for each point element
which specifies the position of an instance and once for
each line element in a subpicture. On each entry
F-pointers are suitably stationed on the data structure
to specify the operation required.

No assumptions are made about whether the picture
information is in 2 dimensions or 3 or whether the
coordinates are given in parametric form or not. The
user writes what words he likes in the data area of
picture elements and interprets them as he likes with the
transformation routine. However, the output from
this routine, representing a view of the picture, is used
by the code generator to write words in the display file
and it is assumed that this view is represented as
Cartesian points and lines in 2-space.

The display code generator

The view generated by the transformation routine is
positioned so that the required part falls over a window
formed by the CRT screen. In some applications not
all of the screen is available for this purpose (for example,
if several non-overlapping views are displayed simul-
taneously or if an area of the screen is reserved for the
use of light-button controls) and thus we introduce four
parameters to specify the window edges, Xa, Xb, Ya
and Yb. These define two vertical lines X = Xa and
X = Xb, and two horizontal lines Y= Yaand Y = Yb
and are chosen so that 0 < Xa < Xb < 1023 and
0 < Ya < Yb < 1023. The window is the rectangle
bounded by these lines. The code generation routine
writes display commands for that part of the view which
isinside the window. A rectangle intersecting the window
edges as shown in Fig. 4a, for example, would be dis-
played as the sequence of visible and invisible lines
shown in Fig. 4b. A flow chart for the code generation

145

DRAW LINE
TEST MK
>0 <0 =0
DOES LINE ICES LINE

COME IN

WHRITE POINT FOR
WHERE LINE ENTERS
WINDOW

SET MK = O
COMPUTE REVISED
LINE. UFDATE

BEAM COORDINATES

IS END OF LINE
IN WINDOW?

YES

DRAV LINE. UFDATE
BEAM & PICTURE
COORDINATES

¥

RETURN

[COMPUTE REVISED LINE
SET MK <0

Fig. 5. Display code generator

routine is given in Fig. 5. The determination of whether
a given line intersects the edges of the window is
remarkably tedious, and no alternative was found to
solving explicitly for the points of intersection. An
automatic scissoring capability such as is found on one
or two more modern displays would have been a most
useful facility.

Prior to writing any display subroutines the code
generation routine sets up a small segment of display
file known as the ‘top of file’. This consists of a few
commands to position the beam for the first instance
(SETPOINT in Fig. 5), a subroutine jump to the first
instance, and a stopcode. The compiled picture is
displayed by starting the display at the first word in the
top of the file. A stopcode interrupt occurs at the end
of the picture and further action is taken by PIXIE as
necessary.

Miscellaneous comments

The compiler is a part, in fact a rather small part, of
the PIXIE system and a few words about the operation
of the display package in PIXIE will not seem out of

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

Compiling display file

place. Successive entries to the compiler with different
N-parameters can be used to generate a sequence of
display files for different pictures. These pictures can
be superimposed on the screen by displaying the
individual display files in round robin fashion.

A pen hit from some picture part gives immediately
information about its identity from the list of names
saved by DDS instructions in instance subroutines. A
level marker in the name list is provided to indicate the
‘scope’ of the hit (i.e. whether a window, or a house of
which the window is a part, is intended when the window
is pointed at by the user). The picture is then recompiled
with the selected instance set to produce a blinking effect
on the screen. Thus the scope of the hit is fed back to
the user and he can, for example, alter the scope (by
moving the level marker) and point again, or track the
selected instance about on the screen, or take some other
action. Tracking is done by copying the relative pen

coordinates into the appropriate point element and then
recompiling the picture. Compiling is normally done
with interrupts enabled so that tracking (for example)
can continue even though the tracked instance may not
keep up with the motion of the user’s hand. If un-
cataloguing mode is selected (CMK = 10000) the
compiling is slow and the display file is long, but the
picture remains accurately registered in the window. If
normal mode is selected an instance may be tracked
outside of the window and the fact will not be detected
until an edge of the screen is violated. The interrupt
arising from the edge violation, however, can be used
to uncatalogue the instance being tracked so that, after
the next compilation, a correctly registered picture is
restored. In applications where this action can be
tolerated substantial savings in compiling time and
length of resulting display file are normally obtained.
These are the applications to which PIXIE is oriented.

Appendix

The display hardware

The Digital Equipment Corporation type 340 is a
digital incremental CRT display employing a 16-inch
tube with a useful area 9%in. X 93in. Deflection
currents which direct the beam are controlled through
digital-to-analogue converters from two 10-bit registers
(x and y).

The display is set in motion by an instruction from
the processor, which loads an address into the Display
Address Counter (DAC) and issues a start signal. Once
started, however, the display obtains its own commands
from the PDP-7 core store through a direct-access
channel, without disturbing the processor, until it
requests processor attention by setting one of its four
device flags.

Commands are normally obtained sequentially from
the display file under the control of the DAC, which is
incremented after each access, but the Cambridge
machine has a Type 347 Subroutine Interface, which
enables the display to break sequence, and call ‘sub-
routines’, without processor intervention (see °‘sub-
routine mode’ below).

Commands are interpreted according to the current
state of a 3-bit mode register, which is cleared to zero
on starting and may be set, according to rules described
below, so as to select the mode for the next command.
Six modes are available on the Cambridge machine.
Numbers in brackets after each mode are the contents
of the mode register when in this mode.

Parameter mode (0)

This mode in which the display necessarily starts, is
used to set the scale and brightness of the display, to
enable or disable the lightpen and to set the mode for
the next command. It can also be used to stop the
display and set the STOP FLAG to request processor

146

intervention. Apart from mode, none of the para-
meters is altered unless an associated ‘permit’ digit is
set, so that scale, brightness and lightpen status need
not be specified in every parameter word. There are
eight brightness levels and four scales (X1, X2, X4, X8);
change of scale affects only Increment, Vector, and
Vector Continue modes, where it alters the spacing
between consecutive points, up to 0-07 in. at the largest
scale.

Point or x—y mode (1)

This mode enables either the x or y coordinate register,
according to bit 1, to be loaded with the value given in
bits 8 to 17. If bit 7= 1 a spot is ‘intensified’ at the
resultant coordinates. The mode register is set in this
as in parameter mode, and the lightpen status may also
be altered. A pair of point mode words will, in general,
be used to set the starting position for a picture-part
drawn in the other, more powerful modes.

Vector mode (4)

In this mode, the hardware for drawing straight lines
is activated. A single vector word can produce a line
segment (vector) with Cartesian components of up to
127 in each direction, the two components being given
(as sign 4+ magnitude) in bits 2-17 of the word. Thus
from 1 to 8 words may be required to draw a given line,
depending on the length of the line. If bit 1 = 1, the
line is intensified at the present brightness; otherwise
the beam is suppressed completely. Bit 0 is called the
‘escape’ digit, and if set to 1 causes the mode register
to be cleared (forcing parameter mode) at the end of
this vector. The mode otherwise remains set to vector.
‘Escape’ also occurs if either coordinate overflows while
the vector is being drawn (‘edge violation’); this also

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

Compiling display file

stops the display and sets either the HORIZONTAL or
the VERTICAL OVERFLOW (EDGE) FLAG, as
appropriate.

Vector continue mode (5)

The format of the command is identical to that for
vector mode, but on completing the vector specified by
the given components the display starts again, drawing
the same vector repeatedly. When the line reaches an
edge, the display escapes to parameter mode and
demands a new command. No edge flag is signalled to
the processor. The escape digit (bit 0) is ignored.

Increment mode (6)

This mode can be used to display four points per
word, each point being specified by x and y steps from
the previous point. The step is a single increment at
the current scale. Greater control is obtained over
precisely which points are intensified than in vector
mode, and increment mode is particularly useful for
highly curved parts of a drawing.

Edge violation may occur in this mode as in vector
mode, with similar effect.

Subroutine mode (7)

Commands obeyed in subroutine mode enable the
display to execute jumps and enter subroutines and also
set the mode for the next word as in parameter and
point modes. Bits 5to 17 hold an address. Bits Oand 1
comprise the ‘op-code’: code 0 is spare and the other
three have effect as follows:

Display Jump (DJP) (Code 2)

The display jumps unconditionally to the given
address, setting the given mode.

Display Jump and Save (DJS) (Code 3)

The current contents of the DAC is preserved in the
‘Address Save Register’ (ASR), and the display then
jumps to the address given. At the same time a flip-flop
called ‘SAVE’ is set; while this remains set, a return
jump occurs automatically when the display next
‘escapes’ from vector, vector continue, or increment
mode. This instruction thus provides a single-level
closed subroutine facility.

References

SUTHERLAND, 1. E. (1963).
Conference, p. 329.
WisemaN, N. E., and HiLes, J. O. (1968).

Display Deposit and Save (DDS) (Code 1)

This instruction does not cause a jump but transforms
the content of the ASR into a DJP instruction selecting
parameter mode, which is then written to the address
given in the DDS instruction. It also clears ‘SAVE’,
preventing automatic exit on ‘escape’. Having written
a DDS at the head of a subroutine, the programmer is
free to use all the display facilities within the subroutine—
he may cause escape, or call other subroutines without
error. Final exit is achieved by obeying in subroutine
mode the DJP written away by the DDS instruction.
Nesting of subroutines to any depth is possible by use
of DDS.

The lightpen

This takes the usual form of a tube with shuttered
aperture, connected by a flexible fibre-optic pipe to a
photo-multiplier. When it has been ‘enabled’, a
sufficiently bright source of light within the field of
view will stop the display and set the LIGHTPEN
FLAG. The display stops in such a way that it can
‘resume’ precisely where it left off (e.g. in the middle
of a vector) if the processor issues the appropriate IOT
instruction.

Interaction with the processor

By means of IOT instructions the processor can
obtain the following information at any time, though it
will usually do so when the display is stopped requesting
attention:

The content of the DAC.

The content of the ASR and ‘SAVE’ flip-flop.

The contents of the coordinate registers, except bit 9

of each.

The processor can also discriminate between the four
flags and issue commands as follows:

Load DAC and start (in parameter mode), clear flags.
Start (in parameter mode), clear flags.

Resume (in current mode), clear flags, disable lightpen.
Clear flags.

The resume command is normally useful only after a
pen flag, since the display is necessarily in parameter
mode after a stop or edge flag. It disables the lightpen,
so as to prevent multiple interrupts from the same object.

Sketchpad, a man-machine graphical communication system, AFIPS Proc. Spring Joint Computer

A ring structure processor for a small computer, Computer Journal, Vol. 10, p. 338.

Ross, D. T. (1964) AED JR: An experimental language processor, M.I.T. Electronics Systems Laboratory Technical Memorandum

ESL-TN-211.

Gray, J. C. (1967). Compound data structure for computer aided design; a survey, Proc. ACM 22nd Nat. Conf., p. 355.

Cross, P. (1967).

A logic drawing board for the PDP7/340, Computer Bulletin, Vol. 11, p. 237.

202 UoJe €1 U0 159NnB AQ 0L¥8LE/L71/2/) L/oIoNe/|ulwoo/wod dno-olwapeo.)/:Sdjy WOy papeojumoq

