
SODA—a dual activity operating system

By Wladyslaw M. Turski*

SODA is an operating system for a new Polish computer ODRA-1204. This paper gives an
account of the basic principles of SODA structure and operation. SODA is an operating system
for a small computer (without magnetic tapes) tailored to the needs of a research institute. A
fundamental objective achieved by means of SODA is the simultaneous preparation and execution
of programs.

(First received October 1967)

In order to understand the basic features and some-
what tortuous principles of the SODA, several words
must be devoted to a brief description and history of
ODRA-1204.

A standard ODRA-1204 is a small scientific computer
whose main characteristics are collected in Table 1.
Originally, this computer was designed as a general
purpose computer with all features necessary for time-
shared BDP applications. Later on, the Elwro Factory
decided to introduce another computer specifically for
BDP and to market a truncated version of the original
machine as a scientific computer ODRA-1204. This
bit of history explains the very unusual and imbalanced
characteristics of the machine which has full interrupt
and memory protection facilities, single I/O channel,!
no tapes and relatively small backing store on magnetic
drums.

The aim of the SODA designers was very simple—to
build an operating system which, while making use of
the advanced features of the computer hardware (which
would have been idle in a traditional one-user-at-a-time
running system), would not actually limit the throughput
characteristics (which could easily happen if standard
solutions were applied). At the same time, the designers
aimed at an operating system reasonably well suited
to the research institute environment in which the
computer was to be used.

In other words, the SODA is a compromise between
several antagonistic tendencies, subject to rather severe
restrictions imposed by certain austerity of the hardware
configuration. The conflicting tendencies are: (i) sus-
tained high throughput, i.e. a development towards
batch-processing of a sort, (ii) short turn-around time
for small programs and frequently many compilations
for a single production run, i.e. a development towards
easily accessible on-line system, (iii) prevailing desire to
utilise as fully as possible the interrupt, memory pro-
tection and autonomous data transmission features

t There is also another version of this computer which is installed
with two I/O channels; for this machine there is an enlarged SODA
II system. Differences between the two SODA's are minor and
mostly implernentational, as the second channel is not used for com-
munication with the external world. These differences will not be
treated here.

* Computation Centre, Polish Academy of Sciences, Warsaw, Poland.

148

Table 1

Basic Information on ODRA-1204

Produced by

Arithmetic

Word length

Memory
core

cycle

drum

Addressing

I/O autonomous channe

paper tape
punch

reader

line printer

control typewriter

Interrupt

Memory protection

ELWRO Factory, Wroclaw,
Poland

Binary, parallel, fixed and
floating point

24 b

4 K-64 K (standard 16 K)

6 /xsec

1-8 units of 64 K word each
(standard 2 units)

relative, indirect, address
modification

1 up to 8 (standard 1)

150 char/sec (standard 1 unit)

300, 1000 char/sec (standard
2 units)

600 lines/min

10 char/sec (standard 1 unit)

on I/O operations, illegal
memory access, certain arith-
metic conditions

in blocks of 256 words, by
address base and upper limit

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA
under the heavy restriction of one-channel and small
array of I/O units. The practical solution was obtained
by a systematic application of two basic principles:

(1) Logical separation of two activities performed by
the computing system: preparation and execution.

(2) Strictly hierarchical organisation of the control
structure within the operating system.

Regarding the first of these principles it may be justly
observed that the two activities are not always clearly
separable in everyday practice. An obvious example of
the information processing task, where the separation is
rather diffused, is running a program under an inter-
pretative translation. In this case the preparation and
execution are normally very much interweaved, in at
least one sense: i.e. that of the time sequence in which
units of action of each activity are undertaken. The
same example may be considered from a different point
of view, raising a highly pertinent question: what is the
precise meaning of the stipulated division? Or even
more basically: in an information processing task what
are the steps constituting the preparation and what are
the steps constituting the execution? Disregarding for
the moment the precise semantic content of these two
terms we may safely assume that in performing almost
any information processing task, presented to a com-
puting device in the form of a program and data, we
shall intuitively differentiate between (i) actions taken
by the computing device according to some previously
stored program (or programs), such that the program
of the presented task is regarded as data, i.e. operated
upon, and (ii) actions taken by the computing device
according to the (possibly modified) program of the
presented task (and, possibly, some other previously
stored programs).

Having recognised functional differences in these two
ypes of activity, one would logically conclude that two

separate operating systems are needed in order to
organise an efficient supervision, particularly so since a
given program may be many times in the preparatory
processing before finally going to the execution. Hence,
two operating systems of 1st level: SUGAR and SEKS
were specified—the former to supervise the performance
of all the preparatory steps and the latter to supervise
the execution. (The names of the systems derive from
Polish abbreviations: SUGAR—system for debugging,
generating, adjustment and reservation, SEKS—system
for execution.) These two systems, together with a
third one—SAD, form the core of SODA. SAD is a
supervising system of Oth level whose job is to converse
with the human operator, supervise SEKS and SUGAR,
and generally judge and decide about priorities and
assignments of various elements of the hardware to the
systems of 1st level.

Irrespectively of our initial intuitive definition of pre-
paratory and executive actions, we are now in a position
to say that in future by 'preparation' we shall mean
actions supervised by SUGAR, and by 'execution'
those supervised by SEKS.

Thus, an information processing task is functionally
split into two types of activity, supervised by two separate
operating systems: SEKS and SUGAR, which, in turn,
are supervised by SAD. SAD's supervision of SUGAR
and SEKS is an example of the application of the second
basic principle of SODA. This principle is carried right
down the entire system, in both its branches (cf. Fig. 1).

SUGAR, or to be more exact, a special program
known as SUGAR Manager selects and supervises the
work of a 2nd level Manager, which supervises, in turn,
the performance of a selected Preparator.*

* By Preparator in this context we mean any of the fixed number
of self-contained programs, stored permanently in the backing
store, capable of accepting an externally coded program (via an
input device assigned to the SUGAR branch) and producing a
suitable internal form of this program.

Level 0

SEKS Executive SUGAR Manager

E* ecu lives

Jobs

H

Managers

Library Preparators

r
la

P2

\

r

Pm

Level 1

Level 2

Level 3

Fig. 1. Hierarchical organisation of control structure of SODA
149

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA

Core
Memory

'^onagers'

Working
Axeaioi ML

Jobs
(Internal Programmes

Drum
Memory

0
Operator

(System Conversation)

Memory AreasOccup/ed
by Fixed Code

g p g MemoryAreasOecupied
Temporarily by Fixed Codes
Fitted Information Flo* Routes
(of temporary activity)
Possible ALU Bonds

Fig. 2. Hardware distribution and sharing

SEKS Executive selects an appropriate 2nd level
Executive. It should be observed that there is no one-
to-one correspondence between Preparators (and their
Managers) and Executives; different Preparators may
produce internal jobs that will work under the same
Executive, or one Preparator may produce jobs to be
run under different Executives—e.g. a formally correct
ALGOL program may be run under one Executive,
whereas a formally incorrect program may be run under
another one.

The selected Executive of 2nd level supervises the
running of the SUGAR prepared program. The super-
vision encompasses the issuing of the static and dynamic
hardware requests (i.e. requesting necessary core memory
areas, backing storage and additional I/O equipment)
and all run-type supervision and organisation (changing
segments, servicing buffers and transmitting I/O requests
in the form required by the more basic Executive).

Before explaining in some more detail the structure
and performance of the individual SODA elements we
should consider briefly the reasons underlying the
selection of such a complicated hierarchy of control
over the information processing.

The reasons are twofold. First reason is the economy
of the main storage utilisation. In the proposed system
only the SAD, SEKS Executive and SUGAR Manager
reside permanently in the core memory (cf. Fig. 2). In
addition, during normal work of the system, only one
of many Executives and one of many Managers occupy

space in the prime memory. This means that only
necessary parts of the supervisory system are present
in the core memory, which is quite obvious and not very
new. Much more important is the second reason, the
simplicity. By making the hierarchical structure very
rigid we were able to define quite precisely the sort of
information which is to be transmitted between levels
(within a branch) irrespective of the internal structure,
and the tasks and performance of individual objects
occupying these levels. Hence, we were able, for
example, to specify clearly what is the kind of infor-
mation that any Executive receives from the SEKS Exe-
cutive, and any Manager passes to the SUGAR Manager.
Moreover, we were able to specify uniform forms of
requests which various elements of the system pass on
to the more basic levels, uniform forms of reporting, etc.
The gain from all this is quite considerable, as will be
clearly seen from two examples:

(1) It is possible to effect the inter-level communi-
cation entirely via fixed dimension tables.

(2) It became possible to formulate precise specifi-
cations for writing users' own Preparators and/or
Executives to be included into the system.

In fact, the pragmatic importance of the latter could
hardly be overemphasised. Since a Preparator may be
for example a compiler, and an Executive—a matching
run-time supervisor for the same language, the SODA
system is capable to accept any new language, without

150

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA
slightest changes in the basic levels of control, provided
that the compiler is written in such a way that it handles
all necessary communication with other levels of control
according to some clearly specified rules. Moreover,
thanks to a high degree of standardisation and fine
resolution of control levels it is very easy to run pro-
grams written externally in two or more languages.

It should once more be emphasised that it is not only
the inter-level communication formats that are standard-
ised, it is also the various hardware requests which are
expressible in a standard fashion.

A general analogy to this system is that of standardised
interface building blocks. Stretching this analogy
explains why the control level resolution is so fine—in
order to preserve high flexibility in such standardised
environment one has to go for pretty small blocks.

Hardware utilisation and sharing

In this section it is convenient to consider our com-
puting system as three separate systems:

(1) SAD—consisting of an I/O typewriter and certain
fixed core area CSAD-

(2) SEKS consisting of one input and one output
device* and a fixed core CSEKS and drum DSEKS
areas.

(3) SUGAR—consisting of one input device and fixed
core and drum areas, CSUGAR and DSUGAR.

In the computing system there is also an Arithmetic
and Logic Unit, ALU, and a transmission channel, TC.
Unassigned areas of the core and drum memories will
be denoted by FC and FD.

SUGAR and SEKS compete for the control over
ALU and TC and try to get as much of the FC as they
currently need. System SAD evaluates their request,
communicates with the human operator and performs
all book-keeping functions, of which we shall give no
detail (they are more or less standard).

A system is considered active only if and when it
exerts control over ALU. When there occurs one of a
number of conditions the hardware generates an inter-
rupt signal. The effect of this signal (for the purpose
of our explanation) is such that ALU is taken away
from the system which at this time was controlling it
and given to SAD. If, at the time of the generation of
the signal, ALU was being controlled by SAD itself,
the signal is temporarily stored. Before releasing ALU
from its control SAD checks whether there are any
interrupt signals stored. As usual, the interrupt signal
carries information of the particular condition which
caused its emission. The system from which ALU was
just taken away is said to be halted.

Occasionally, a system wants to transfer some infor-
mation to or from its core area. In order to do so it
requests services of TC. This request causes an interrupt
and the system becomes suspended until it gets control
over TC. It should be noted that:

* We are considering here the standard ODRA-1204 con-
figuration.

(1) Only an active system may request TC.
(2) If the request comes from a system other than

SAD it becomes momentarily halted.
(3) If the request comes from SAD it does not halt,

but if TC is not available immediately, SAD enters
a special waiting loop without releasing ALU (in
fact, a TC request coming from SAD does not
cause an interrupt signal; on the other hand any
human operator's message to SAD generates
such a signal and activates SAD, which enables
it to get hold of TC as soon as the latter becomes
available).

When SAD decides to give control of TC to a sus-
pended system, this system enters the so-called transfer
mode. A system in transfer mode is not active. At the
end of requested information transfer, TC issues an
interrupt signal and the system which was in the transfer
mode becomes waiting (for ALU). For simplicity's sake,
we shall say also that a system which was halted and
did not become suspended is also waiting. Thus, on an
interrupt it may happen that when SAD wants to
release ALU either one or both remaining systems are
waiting. In the former case ALU is given to the waiting
system, in the latter—to SUGAR. Thus, SUGAR has
higher priority, which is explained by the nature of its
work, from which it follows that SUGAR is more likely
than SEKS to make frequent TC requests and hence less
likely to monopolise ALU.

Thus, the sharing of ALU between the three systems
is organised as follows:

SAD gets it immediately when there arises a condition
requiring its activity (the only possible exception occurs
when the operator wants to send a message and TC is
already busy with a transmission; in this case the pos-
sible delay is the duration of this single TC task which,
in view of the lack of magnetic tapes, cannot be longer
than a few seconds t).

SUGAR gets control over ALU whenever it is ready
to make use of it, unless there occurred interrupt con-
ditions which have to be taken care of first.

SEKS gets control over ALU when it is ready to make
use of it and neither interrupt conditions nor SUGAR
are waiting to be serviced.

In Fig. 3 and Table 2 we give an example of a sequence
in which ALU and TC are allocated to particular systems
together with the listing of corresponding systems statuses.

From the adopted policy of ALU sharing it follows
immediately that for smooth running of both SEKS and
SUGAR it is essential that SUGAR calls for relatively
short bursts of ALU activity and frequent information
transfers. It may be worth-while pointing out that it is
generally assumed that a good balancing of the com-
puting system utilisation may be achieved when BDP
jobs are run against the background of 'scientific' com-
putation. Since in the type of organisation for which

t And this only in cases when the full output buffer is being
emptied onto the paper tape; if the line printer is used as an output
device for SEKS, the delay may never be longer than a fraction
of a second.

151

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



a b c d
SAD „ „

SEKS

SUGAR

SODA

0 p

(Heavy line denotes ALU allocation, •- an Interrupt Signal
wavy line denotes TC allocation) \- Operator's Signal

Fig. 3. Sequence of ALU and TC allocation

SODA was designed, BDP jobs are rare and far between,
the BDP part of the scheme had to be replaced by some
other information processing tasks of similar nature
(prevalence of data transmission and retrieval over bulk
computation). This was the original stimulus to con-
sider separation of information processing jobs into
their preparatory and executive phases.

TC sharing policy is very simple. Since a system
(other than SAD) becomes inactive as soon as it requests
the TC services the policy 'first request—first served'
was a natural choice. The only exception is that SAD's
requests have higher priority than those of other systems,
which permits fast operator-system communication.

One more essential feature of the system should
perhaps be indicated at this time: Since the number of
I/O equipments and their distribution among the systems
are fixed it was decided that the I/O buffers (of fixed
capacity) be included into CSAD. CSEKS

 a n c l
 QUGAR-

These buffers belong to the 1st control level and are
thus inaccessible to a programmer who operates on the
3rd control level. Hence, I/O mechanisms he uses are
first transformed by the 2nd level Executive into the
standard 1st level I/O requests structure and then
executed in two steps: the actual input/output takes
place on the 1st control level and necessary conversions
and distributions are performed on the 2nd level by
means of 'internal I/O procedures'. Finally, utilisa-
tion/generation of data takes place on the 3rd level.
The number of pseudo-buffers and data structures of
the 3rd level are of no concern to SODA.

Finally, let us discuss the memory sharing in SODA.
Basic areas CSAD> CSEKS> CSUGAR, incorporate all pro-
grams and tables pertinent to Oth and 1st level of control
structure. Programs and tables of the 2nd level are
permanently recorded in DS EKS and DSUGAR- In DSEKS
resides also the permanent library utilised by various
programming systems employed in SODA; DSUGAR
houses all Preparators available in SODA.

Let us suppose that at a certain instant of time there
are k jobs ready for the execution (i.e. internally coded,
recorded in DSEKS)» SEKS controls currently a core
area CSEKS. SUGAR—COUGAR* and the execution of a
current job has just finished. Suppose further that SAD
has given to SEKS a command (which in absence of the

operator's intervention is normal): 'execute next job'.
SEKS Executive selects the highest priority job from
/ ] , . . .,Jk (by an analysis of a suitable portion of the
Job Directory Table). From the internal label (see
below) of the selected job the SEKS Executive deter-
mines the core requirements of this job. If it can be
accommodated in CSEKS, or more precisely in the
CSEKS—CSEKS the execution of this job follows without
further delay. If, however, these requirements exceed
the core space currently available to SEKS, the system
requests from SAD an additional core area. If this can
be granted, SAD performs suitable reapportioning of
the memory and the execution of the selected job follows.
Otherwise, the SEKS Executive is instructed to select
the second highest priority job, and so on.

If no job waiting for the execution can be accom-
modated, SAD informs the human operator of the
situation. He then makes a decision by selecting one of
two options made available by SODA. Either he stops
SUGAR, in which case COUGAR is dumped onto DSUGAR
and CJUGAR—CSUGAR becomes available to SEKS, or
he temporarily stops SEKS permitting SUGAR to
finish its current task. The operator's decision depends,
of course, on the circumstances, but generally the second
option seems more promising, since if the SUGAR
action is stopped there is no chance of it's being resumed
before the full current load of jobs is discharged (no job
from this load could be accommodated together with
the dumped SUGAR task). Whereas, if the current
SUGAR task is conducted to the end it may add a new
job which may perhaps be executed by SEKS permitting
at the same time initiation of a new task by SUGAR and
thus avoiding a stalemate of a sort.

When a new SEKS task is a job requiring less than
the current C*EKS the difference is released and added
to the current FC*.

Similarly, when SUGAR finishes its current task and
is ordered by SAD to procede with a new one, it may
either release some area to FC*, be satisfied with the
current C|UGAR or request additional core area. If this
request can be granted it is; if not, however, SUGAR'S
activity is temporarily stopped by SAD, and the operator
informed (for record purposes only). SUGAR'S activity
is also stopped if there is no more space left in the

152

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA

Table 2

Example of dynamic changes in systems status (as illustrated by Fig. 3)

SAD SEKS SUGAR

transmitting active
a (interrupt)

active waiting halted
b

waiting active
c (interrupt)

active waiting halted
d

active transmitting
e (interrupt)

active halted transmitting
f

suspended transmitting
g (interrupt)

active suspended waiting
h

transmitting active
i (operator's interrupt)

active transmitting halted

active (in waiting-loop) transmitting halted (waiting)
k (interrupt)

active waiting halted (waiting)
/ ^ ~ ~ ~ ~ ~ ~ ~ — • — - ' — • ' — ' •

transmitting waiting halted (waiting)
m (interrupt)

active waiting halted (waiting)
«2 —- —_ _-^ —_ _ _ ___ ___ . ___ ___ ^__ — ___ ___ —__

waiting active
o (interrupt)

active waiting halted
p

active transmitting
q (interrupt)

active halted waiting
r

halted (waiting) active

drum memory for storing any more of the internally
coded jobs.

Thus SODA does not permit piling up of the prepared
jobs at the expense of (even temporarily) stopping the
execution. The reasons for such a decision are clear
enough and we shall not elaborate this point any further.

Functions of SUGAR
Within the SUGAR branch there are three levels of

control: SUGAR Manager, a Manager selected from
the set M,, . . ., Mm, and a Preparator selected from the
set P, ,...,/>„,.

SAD gives to the SUGAR Manager the command

'go on with next task' indicating at the same time
whether the program of this task is to be read from the
tape reader (TR) or from the typewriter. Since normally
the reading is from the TR, we shall restrict our dis-
cussion to this case only. Each external program is
preceded by the so-called external label (EL). The EL
contains the following information, recorded in a
standard form (i.e. independent of the language in
which the external program is written):

(1) preparator specification
(2) required mode of preparation
(3) run-time specification and options.

153

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA

The first item specifies the Preparator necessary to
carry out the preparation of the given information pro-
cessing task. This may be, for example, one of the
translators and preprocessors contained in the system,
or one of the correcting routines.

The SUGAR Manager checks whether the required
Preparator is available in the system and whether it can
be activated at this time. Each Preparator has its own
specific hardware requirement (in the case of SODA it
is mostly the required volume of the core memory).
These are collected in a table available to the SUGAR
Manager and from this table it is determined whether
a given Preparator may be activated at a given time, i.e.
with the present memory allocation. If the Preparator's
core request exceeds the amount currently available to
SUGAR, the SUGAR Manager requests an additional
space from SAD, as discussed earlier. It should be
noted that some Preparators may be segmented and their
2nd level Managers constructed in such a way that the
amount of the core storage used during their per-
formance may be variable within certain limits. It is
possible, for example, that a compiler will perform satis-
factorily when only one of its segments is present at a
time in the core memory, but it will perform better
(faster) if several segments may be accommodated
simultaneously. In such cases the requirement table
available to the SUGAR Manager contains two entries:
the minimal amount of storage necessary for the Pre-
parator's function and the maximal amount which can
be reasonably used by this Preparator. If, by table
look-up, the SUGAR Manager discovers such an option
it consults SAD concerning what amount of core is to
be allocated for the current task. SAD's decision is
based on the consideration of the total amount available
just now, and on the request of the next priority job for
SEKS. As soon as the core memory is allocated for the
current SUGAR task, the 1st level Manager brings an
appropriate 2nd level Manager from the drum storage.
This Manager becomes now a basic control level in the
SUGAR branch. It supervises the work of the Pre-
parator and propagates the necessary information
through the remaining parts of SODA, via the interrupt
mechanism. The last feature is strictly connected with
the standard memory protection mechanism whereby
addresses outside the designated area (comprising
Manager, Preparator and working area) are treated off
limits.

From the second item of the EL, passed down the
control hierarchy, the 2nd level Manager determines the
utilisation mode of the Processor. This is best explained
by an example. If a Preparator is a compiler, a user
may want to compile a program and have it run, or
may only want it formally checked. In the first case the
preparation consists of the production of the full internal
form of the program, in the second case only a list of
formal errors is prepared (these are hopefully absent in
the first case).

The last item of the EL, i.e. the run-time specifications
and options, are transformed from the standard form

into a form appropriate for the Executive which will
eventually supervise the execution of the internal job, and
are incorporated into the internal label (IL) of this job.

The Preparators of the SODA system are not restricted
by the system to do any particular kind of preprocessing.
It is envisaged that among them there will be compilers,
precompilers (programs producing internal forms suit-
able as data for interpreters), correctors (i.e. programs
for correcting jobs already recorded in the internal form,
or replacing one part of the external program by another,
supplied separately), etc. Generally speaking, Preparators
take their input from the TR and produce an output
which is assembled on the magnetic drum as a new
internal job. It is not, however, precluded that a part
of input may be taken from the stack of prepared jobs.
This option is restricted only to such jobs as were
assembled internally under the 'to be corrected' mode
of preparation. In such cases not only the specific
internal code but also all necessary tables are recorded
on the drum, and the IL carries a special mark indicating
this fact. Taking into account the rather limited size
of the memory this facility is in the present version of
SODA restricted to very simple languages only (e.g.
PLAN programs to be run in the interpretative mode).

Another interesting point is that during the prepara-
tion no external output is produced.* The whole output
goes to the magnetic drum, and external output is always
considered as an execution. Hence, if the preparation
consists in producing a list of formal errors in an external
program, the list will be prepared in the SUGAR branch
and recorded on the drum as an internal job to be 'run'
under standard printing routine as the Executive. The
execution, of course, consists in printing this list out.

The results of the preparation are thus always recorded
in the backing store, at the addresses indicated to
SUGAR by SAD. This record is supplied with the IL,
containing some of the information originally recorded
in the EL and also some new information generated in
the course of preparation. Having finished the prepara-
tion, the 2nd level Manager reports to the SUGAR
Manager. The latter records the current state of the
SUGAR system and the changes which the last prepara-
tion has introduced into the state of the whole system
(new occupancy limits in the drum storage, new job
added, etc.) and reports to SAD. SAD takes notice of
these changes by adjusting the system state tables in
such a way that the updated status information is
deposited on these levels where it will be needed in
performance of the next assigned task, and then informs
the operator of the just finished preparation. This
information may also contain a brief description of
deviations (if any) from the expected course of prep ara-
tion (e.g. if a program was to be compiled and then run,
but the Preparator found it formally incorrect, the
operator gets a message 'program (name) formally
incorrect').

* Except, possibly some remarks to the operator, e.g. when a
program has been submitted written in a language for which no
translator is available.

154

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA
The operator may now give to the newly created

internal job a priority (a number from the range 0-99).
If no priority is explicitly given, the job gets the priority
50. It should be observed that, if the preparation was
abnormal, the operator may request a very high priority
output of the preparation results by giving to this 'job'
a suitably high priority value.

Functions of SEKS

Within the SEKS branch there are also three levels of
control: SEKS Executive, an Executive selected from
the set Eu . . ., En and a job program. The difference
with respect to the SUGAR branch consists in that
whereas in SUGAR all active programs are pre-recorded,
in SEKS the basic program—job—is (at least partially)
derived from the user's input.

The SEKS Executive, having received from SAD a
command to proceed with the next job, selects it from a
table of jobs currently available in the backing store.
This selection is normally done either according to the
priority, or a job associated with the particular name is
selected. The latter happens if the operator requests of
SAD the execution of a given job rather than letting it
choose the job automatically. Under abnormal con-
ditions (lack of sufficient core space) the system works
according to the options described earlier.

Having selected the job, the SEKS Executive brings
to the core memory the IL of this job. This contains
the following information:

(1) 2nd level executive request
(2) run-time specifications and options
(3) library specifications.

The first item allows an appropriate Executive to be
brought from the backing storage (unless it is left there
from the previous execution). This Executive then
assumes full control of the execution. From the second
part of the IL it determines the necessary core memory
volume and reports it (via SEKS Executive) to SAD.
If the job is written in a segmented form this request
may again be of the alternative form and, similarly to
what we described above, it is up to the Executive to
supervise the replacement and distribution of segments
during the execution. Other run-time specifications and
options are specific for each of the Executives and will
not be discussed here. (They include the specification
of the output mode, on-line communication via the type-
writer and so on). Finally, the library specification part
informs the executive which routines from the executive
library are to be incorporated or made available to the
job program.

Since the organisation of the SEKS branch is very
similar to that of SUGAR we could stop our discussion
at this point. As, however, the example of the inter-
pretive translation was mentioned before, we shall
briefly describe the interpretive execution of a job.

An external program intended for such an execution
has been already preprocessed by a suitable Preparator

and transmitted to the backing store in a form of machine
coded representation of the external form. This repre-
sentation is (depending on the programming language)
a more or less simple binary coded version of the source
program. An appropriate Executive brings from the
executive library the interpreter (or an initial segment of
it) and an initial part of the code representing the pro-
gram. Now, the interpreter becomes the active control
level and treats the binary coded program as an 'internal
input'. Naturally, the interpreted, and immediately
executed, statements of the program may cause a
physical input to take place; this is then performed
through the SEKS tape reader.

We shall make one more comment, though it may
appear superfluous. When an internal job is being
executed all memory references outside the currently
assigned core area (i.e. the lowest three segments in
Fig. 2) cause an interrupt. Under certain circumstances
this may be very advantageous (in fact, this has been
extensively exploited to indicate the necessity of changing
the mode of execution of a job, a technique which will
be described separately), but always it gives full pro-
tection against any damage a non-tested user's program
might do to the system.

The functions of SAD
As we mentioned earlier the main functions of SAD

are:

(1) handling the operator communication
(2) supervising SEKS and SUGAR activities
(3) systems book-keeping.

The second and third of these functions either were
described, or are so very standard as to be of no interest.
Thus, we shall restrict ourselves to a brief discussion of
the first function.

SAD performs the overall automatic control over the
entire SODA system. It has been recognised from the
very beginning, however, that the limitations imposed
by the hardware will often cause contingent situations
to occur, such that an automatic control, though pos-
sible in principle, would require very sophisticated
decision making. Since this would be highly undesirable
on (at least) two counts: (i) complex programming con-
suming too much of the valuable core space, (ii) inherent
lack of flexibility of such solution, it has been decided
to leave the decisions in such cases to the human operator.
Departing from this decision it became quite clear that
it would be relatively easy to allow the operator to over-
rule any decision made by SAD. In fact, the operator
could be considered as a —1 level of control in the
SODA hierarchy. It is occasionally called from below
(i.e. from SAD) but, contrary to all other systems, it is
(at least one would hope) permanently active and may
intervene at wish.

The operator's intervention is achieved by his choosing
one of a set of commands which he may type on the
typewriter. We have seen that such messages are

155

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024



SODA
attended to by SAD practically immediately as they
appear. We have already discussed two major subjects
of the operator's decisions; below we list several others:

(1) It may happen that the execution of a current job
is not terminated within the allotted compute-
time interval (this is discovered automatically by
SAD). The operator uses his discretion whether
to dump this job (into the SEKS dump area of
the backing store) and proceed with a next SEKS
job or give this job an additional 'grace period'.

(2) Temporary changes in I/O equipment allocation
to SODA subsystems.

(3) Changes of the priorities of jobs waiting for
execution.

(4) Overruling the priority scheme and indicating by
name the next job for SEKS.

(5) Overruling certain parts of the selected job
Executive, e.g. initialisation of a job from an
auxiliary entry point.

(6) Bringing jobs for execution from the SEKS dump
area and restarting them.

(7) Deleting jobs from the waiting for the execution
list and from the SEKS dump area.

(8) Changing the mode of execution of a job (e.g.
instead of the requested run producing a binary
coded version of the job on a tape, ready for the
later input through a standard binary input
Preparator).

(9) Requesting an alarm output of the binary coded
'image' of the core memory and/or backing store.

(10) Direct input to arbitrary hardware locations (i.e.
setting the memory, operator's switches, pro-
grammable switches, accumulators, etc.).

SAD contains a set of relatively simple routines, one
for each operator's command. These are activated on
the decoding of the operator message. The messages
may be either control commands which perform the
tasks listed above or information requests which ask
SAD to produce records of the system utilisation past
and/or present, hardware distribution, jobs states, etc.

Periodically, SAD produces full listing of all statistical
tables it keeps. This may not be suppressed by the
operators, and, when suitably bound, forms the log-book
of the computing system.

Acknowledge ments
The SODA system has been designed in the Computa-

tion Centre of the Polish Academy of Sciences under an
agreement with the Elwro Factory. The author is
indebted to many people with whom he has discussed
certain aspects of the system and who contributed to
its implementation and in particular to Mr. J. Maronski
who patiently transferred many half-baked ideas into a
set of flow and state diagrams.

The lack of the customary reference listing should
not be understood as an intended indication of this
paper's absolute originality. Quite the contrary, the
paper owes so much to so many sources that it would
not be practical to list all of them.

Book Review

Machine Intelligence 2, edited by E. Dale and D. Michie,
1967; 252 pp. (Edinburgh: Oliver andBoyd, 70s.)

This book contains the collected papers of the Second Machine
Intelligence Workshop held at Edinburgh University in the
summer of 1966. Compared with the First Workshop, held
a year earlier, there are fewer papers, 14 as compared with 17;
also there is a slight, yet noticeable shift in fields of interest.
This Workshop shows more emphasis on programming lan-
guages, and their basic properties. Four authors (besides the
Edinburgh group) appear for the second time; these are
Cooper, Murray and Elcock, and Foster. It is quite interesting
to note the 12 months progress. The Edinburgh group also
shows progress in its heuristic programming methods, and
gives a reference manual for the on-line programming lan-
guage it has developed—POP-2.

Undoubtedly the best way to give the flavour of the Work-
shop is to quote the titles of the papers, these are: 'Semantics
of Assignment', by R. M. Burstall; 'Some Transformations
and Standard Forms of Graphs with Application to Computer
Programs', by D. C. Cooper; 'Data Representation—the
Key to Conceptualisation', by D. B. Vigor; 'An Approach
to Analytic Integration using Ordered Algebraic Expressions',

by L. I. Hodgson; 'Some Theorem Proving Strategies Based
on the Resolution Principle', by J. L. Darlington; 'Auto-
matic Description and Recognition of Board Patterns in
Go-Moku', by A. M. Murray and E. W. Elcock; 'A Five
Year Plan for Automatic Chess', by I. J. Good; 'BOXES: an
Experiment in Adaptive Control', by D. Michie and R. A.
Chambers; 'A Regression Analysis Program Incorporating
Heuristic Term Selection', by J. S. Collins; 'A Limited Dic-
tionary for Syntactic Analysis', by P. Bratley and D. J. Dakin;
'POP-1: an On-line Language', by R. J. Popplestone; 'Self-
improvement in Query Languages', by J. M. Foster; 'POP-2
Reference Manual', by R. M. Burstall and R. J. Popplestone.

In other subjects the value of an annual conference held
in the same pleasant surroundings is well established, and a
worthwhile tradition soon grows up. It seems that the
Edinburgh Workshops will take this role for Machine
Intelligence.

One complaint—in these days of the information-explosion
the appearance of papers which are not headed by an abstract
is wrong, and surely doubly wrong in the Information Sciences
themselves.

J. J. FLORENTIN (London)

156

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/148/378420 by guest on 13 M
arch 2024


