
Basic subroutine for the input of numbers, words, and special
characters

By B. E. Cooper*

The purpose of this paper is to describe a basic all-purpose format-free input subroutine and to
show that such subroutines can be written with both efficiency and flexibility. A second purpose
is to encourage the use of such subroutines to improve the often arbitrary presentation rules users
normally must follow to communicate with a program. The subroutine reads one card at a time
and assembles the information as a list of words, numbers, and special characters. The rules of
assembly are defined in terms of two arrays of constants and may therefore be changed by program.
The various decisions are taken quickly with reference to these arrays, and the programming is
not machine dependent.

(First received September 1967 and in revised form April 1968)

A great number of programs written, particularly if they
pretend any generality, offer a number of different
options which the user may select. The rules the user
is expected to follow to make his selection often frighten
potential users away. For example: if Blogg's analysis
is required punch PQR in columns 14, 27 and 38 of
card 4. If extra output is required punch 9 in column
54 of card 3, otherwise punch 8. If a fifth card contain-
ing a title is to be presented punch ZEBRA in columns
11 to 15 of card 2.

Rules of presentation are often more difficult to
understand than the numerical method employed in the
program, and much time, both users' and computers', is
wasted because little thought is given to lightening the
users' task. Some programs, of course, do allow
flexibility in the way information is presented but I think
that it is true to say that there is considerable room for
improvement in this respect. Free-field format sub-
routines have been available for many years but the
problem programmer has largely ignored them and has
stuck to the standard FORTRAN format-bound instruc-
tions. This paper describes a particular subroutine of
this kind which has been in use for some time as the
basic input subroutine for a large statistical and data
filing system called ASCOP (see Cooper, 1967) and
argues that the particular organisation of this sub-
routine has a large number of advantages.

Use of such a subroutine enables the programmer to
relax the restrictions he might otherwise insist on in the
presentation of information to the program. Instead of
insisting that the required information be punched in a
rigid format, with a coding scheme for the selection of
the required options, he can allow the user freedom of
preparing information as though he was typing instruc-
tions for a subordinate. The selection of Blogg's method
can be made conditional on the appearance of the word
BLOGGS somewhere in the specification and a title can
be introduced by the word TITLE itself. The assumption
of default settings for parameters the user is not con-

* Atlas Computer Laboratory, Chilton, Didcot, Berkshire.

cerned with can be made more easily, and the user
introduces only that subset of the specification he is
concerned with when presenting his particular problem.
In fact the programmer may go so far as to allow
alternative means of introducing the same information.
Different users often use different names for the same
mathematical technique, and it is not hard to allow the
use of two or more different words to refer to the same
analysis.

General description

The name and argument list of the subroutine to be
described is as follows:

SUBROUTINE CARD (FLA, IFX, IWS, NIT, IND)

Subroutine CARD reads one card, performs a left to
right scan and assembles the information as a list of
numbers, words, and special characters in the array
FLA. Numbers are in normal floating-point form and
the words and special characters are stored in the
appropriate FORTRAN alphanumeric form. Integer array
IFX contains indicators enabling the type of the items
to be identified and integer array IWS the columns on
the card on which successive items terminate. The card
is read initially with format (80A1) into an array in
COMMON and the text of the card is therefore available
to the calling routine as well. This array is left intact
during the scan and it is therefore possible to re-assemble
the information contained on the last card read. The
number of items read is supplied in the integer scalar
NIT, and IND takes one of a number of values according
to the type of card read—for example, error free, with
special characters, blank.

Additional facilities include the reading of numbers to
a base other than ten, and the continuation of informa-
tion onto further cards by the use of a continuation
character punched as the last item on each card to be
continued. The continuation character is usually $.

157

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/157/378440 by guest on 19 April 2024



Basic input subroutine

Organisation
The subroutine uses two arrays of integers, known as

the character integers and the decision integers, in the
assembly process. The use of these two sets of integers
makes the program itself machine independent and to a
large extent card-code independent. Each possible
character in the computer's vocabulary is allocated to
one of ten groups, and associated with each character is
an integer in the character integer array ICHAR. In
the subroutine described here we assume there are 64
different characters but this number can be easily
changed if more characters are possible. The character
with internal value I has ICHAR(I + 1) associated with
it, and the value of ICHAR(I + 1) contains two pieces
of information. The units and tens part is the number
of the group to which the character is allocated, and the
remaining part is 100 times the value the character is to
have when used in assembling items.

For example, on Atlas the character 2 has internal
code 18 so that if ICHAR(19) is set to 201 the character
2 is allocated to character group 1 and the numerical
value 2 is used in assembling this character as part of a
number.

The ten groups used in CARD are denned in Table 1.
The card is scanned from left to right and the current

state of assembly plays a vital part in determining the
processing of the next character in the scan. Seven
assembly states are denned as follows:

1. No item started.
2. Word started.
3. Number started but before the decimal point.
4. Number started but after the decimal point.
5. Exponent indicator (usually the character E) read

after number.
6. Exponent indicator passed after a number.
7. Exponent started.

The scan always begins in state 1 and if, for example, a
letter is read the state moves to state 2. The state
remains 2 until a character capable of changing the state
is read, that is until a character which cannot form part
of a word is read.

The scan section of the program is divided into 21
parts and the path through these parts is decided
according to the characters read and the values of the
decision integers. The decision integers are stored in a
10 X 7 array JDIS. When a new character is en-
countered its group is quickly determined from the
character integer array. This together with the assembly
state determines which decision integer is appropriate.
As is seen from Table 1 the value of this integer is the
number of the part of the program to be obeyed.
Details of the 21 program parts are given below:

State
Part Change Action

1 Note the reading of a sign (Character
type 5 or 6).

2 2 Start a word—treat a previously read sign

Table 1
The standard values of the decision integers

ASSEMBLY
STATES

1
2
3
4
5
6
7

D
IG

IT
S

1

3
9
7
8

13
14
15

L
E

T
T

E
R

S

2

2
6

10
10
12
17
16

a.o
u
5

E
X

P
O

N
E

N
T

 
IN

3

11
6

10
10
12
17
16

D
E

C
IM

A
L

 P
O

I1

P
L

U
S

 
S

IG
N

M
IN

U
S

 
S

IG
N

CO

a!

SP
E

C
IA

L
 

C
H

A
I

CHARACTER GROUPS

4

4
9
5

21
13
17
21

5

1
9

10
10
13

1
16

6

1
9

10
10
13

1
16

7

18
9

10
10
12
17
16

SE
P

A
R

A
T

O
R

S

8

19
9

10
10
13
19
16

A
R

A
C

T
E

R

X

uz

C
O

N
T

IN
U

A
T

IO

9

20
9

10
10
12
17
16

S

^C
T

l

pi

IL
L

E
G

A
L

 
C

H
A

10

21
21
21
21
21
21
21

as a special character—note in IW the
present column on which the word begins.

3 3 Start a number before the decimal point—
set AIN equal to the value of the digit.
(The number will be built up in AIN.)

4 4 Start a number with a decimal point—set
AIN equal to zero—set POW = 1 0 .

5 4 Decimal point read whilst in the middle
of a number—set POW = 1 0 .

6 Continue word—do nothing.
7 Continue number before decimal point—

multiply AIN by BASE and add the value
of the current digit. (This operation
should be protected by a test for overflow
—this test is machine dependent^)

8 Continue number after decimal point—
divide POW by BASE, multiply by value
of current digit and add to AIN.

9 1 * Terminate word—word begins on column
IW and ends on the current column—call
subroutine WORD to pack the letters
appropriately.

10 1* Terminate number—store AIN taking
account of any previously read sign.

11 2 or 5 Exponent indicator read—take as ex-
ponent and set state to 5 if following a
number—take as beginning a word if
following a sign or a word or if it is the
first item and set state to 2.

12 2 Take exponent indicator as beginning a
word.

13 6* Exponent indicator passed.
contd.

158

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/157/378440 by guest on 19 April 2024



Basic input subroutine

14

15

16

17

18

19
20
21

1*

1

Begin exponent—set JEX to value of
current digit.
Continue exponent—multiply JEX by
IFIXF(BASE) and add the value of the
current digit.
Terminate exponent and number. (This
operation should be protected by a test
for overflow based on the value of the
exponent—this test is machine dependent.)
Store exponent indicator as a one-
character word.
Assemble special character—set IND to
2.
Ignore character—no action.
Stop all processing.
Illegal character read—output diagnostic
—set IND to 4.

Some program parts (marked *) cause the assembly state
to be changed and the decision integers re-inspected with
the new state. This ensures that characters encountered
in certain positions can properly fulfil the two functions
of terminating an item and beginning a new item. For
example if we punch CAR4 in consecutive columns on
a card the characters CAR will contribute to a word and
the state will be 2 when the digit 4 is encountered. If
the decision integers are set appropriately the action will
be to terminate the word and to reset the state to one.
Re-inspection of the decision integers at this point
ensures that a number is started with the value 4.

The advantages of this fragmentation of the program
are:

1. The structure is clear and easily changed or
augmented.

2. Assembly rules can be changed by program.
3. The coding is not machine dependent nor does it

assume a particular internal character code.
4. By use of an array of integers and the FORTRAN

GO TO statement, decisions are taken quickly and
the decisions are clearly denned.

5. The subroutine can be easily tailored to particular
requirements and unwanted facilities discarded.

6. The same card may be re-processed.

Changes in the rules
Many examples of changes in the assembly rules will

have occurred to the reader already. However, a
number of examples are described below to illustrate the
flexibility of the subroutine. The flexibility is particularly
apparent when we remember that such changes can be
made during the execution of the calling program.

Changing the decision integer for state 2, character
type 1 from 9 to 6 causes a number encountered im-

mediately after a word to be taken as part of the word.
That is, the change would cause the sequence CAR4
to be taken as one word rather than as a word followed
by a number. Similarly, a special character can be
accepted as part of a word if it immediately follows the
word by changing the decision integer for state 2
character type 7 from 9 to 6.

The second example is particularly interesting. A
misunderstanding of the use of continuation cards when
presenting data cards to a program using CARD was
responsible for the inclusion of the character $ at the
end of each of a large number of records in card image
form on magnetic tape. The simplest change causing
these additional characters to be ignored was to re-
allocate the character $ to type 8 for the duration of
the reading of the data. This change, in fact, necessi-
tated recompilation, but instead access to the decision
and character integers could easily be passed on to the
user of a program. The resulting gain in program
flexibility makes this well worth while.

A final example concerns the use of comment cards
presented with the data to a program. To achieve this
the comment card must be recognised as such by CARD
and the information on the card assembled in alphanu-
meric form. It was decided that the character * should
be punched as the first item on the card to indicate a
comment and this character was allocated to group 2.
The calling program inspected FLA(l) for every card
read by CARD and if this was * the card was printed
and otherwise ignored. With these changes a card
beginning with * followed by a space would be treated
as a comment card and the comment printed.

Efficiency
The reader's first impression of the efficiency of this

approach might be to believe that a lot of work is per-
formed to achieve a relatively simple result. It must be
remembered that the work involved in taking the various
decisions is quickly performed by a little integer arith-
metic and the GO TO statement, and that this is per-
formed instead of the work normally involved in inter-
preting a Format statement. The integer arrays take up
a total of 134 locations but use of these involves a
reduction in the size of the program itself which more
than compensates. A possible source of inefficiency may
be the way in which the particular FORTRAN compiler
deals with the initial reading of the card in (80A1) form.
Some compilers are more efficient than others in this
respect and it might repay efforts to replace the single
input statement with a machine-code subroutine which
reads a card with this particular format. With this
modification considerable improvements in reading
speeds over the usual FORTRAN statements have been
achieved.

Reference
COOPER, B. E. (1967). ASCOP—A Statistical Computing Procedure. / . Royal Slat. Soc. Series C (Applied Statistics),Vol. 16,

No. 2, pp. 100-110.

159

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/157/378440 by guest on 19 April 2024


