K Autocode

By A. Gibbons*

This paper describes a development of Mercury Autocode (Brooker, 1958) known as K Autocode,
The first implementation of K Autocode was for the English Electric KDF9 and the second for
the IBM System/360. In addition to the usual numerical facilities and procedures, the language
provides comprehensive input/output, random and sequential file processing, symbol manipulation

and a matrix scheme.

(First received October 1967)

In 1962, ICI ordered a KDF9 to replace its existing
Mercury computer. When the KDF9 was delivered in
February 1964, the Mercury was being used on a 3-shift
basis for five or more days a week and the workload was
programmed almost entirely in Mercury Autocode.
There was an Autocode library of over 100 programs,
several hundred personnel were conversant with the
Autocode language and over 2,000 programs were in
use. It was the intention at that time to use Autocode
on both machines during the transition period and
gradually to convert programs and programmers to
ALGOL.

A compatible compiler was written and came into use
in May 1964. Another compiler was also provided which
contained extra facilities. These were welcomed and
suggestions were made for further improvements. As a
result, K Autocode was defined and a preliminary
implementation made available in October 1964. Sub-
sequently the language has been extended and, because
of the relative inefficiency of the ALGOL implementations,
is now the most widely used technical programming
language in 1CL.

In October 1965, the first of a series of System/360
computers was installed and a 360 implementation of
K Autocode started. At the present time, March 1968,
nine 360s have been delivered and K Autocode is
available on the larger models.

For the future, PL/I is probably the preferred language
but the inefficiency of the initial implementation in
relation to K Autocode does not yet make this an
attractive proposition.

The description of the language which follows is far
from complete and is intended to give a general under-
standing only. More information can be obtained from:

The Information Officer,
ICI Management Services,
Fulshaw Hall,

Wilmslow,

Cheshire.
Abbreviations
A, B upper or lower case letters
Ap, Bg integer or real array variables

* ICI Management Services, Fulshaw Hall, Wilmslow, Cheshire.
160

A0, BO
E F
ILJ,K L
Ip, Jq

1. The elements of the language
1.1 The alphabet
The alphabet of the language consists of 86 symbols:

ab...zAB...Z01...9
T+ —[F<=>.,;:0)[]1"¢* 0

and the non-printing symbols:
‘space’ (sp) and ‘newline’ (nl)

The symbols of this alphabet are represented in the
IBM 60 character set either directly

base elements of arrays
integer or real expressions
integer expressions
integer array variables
integer variable
unsigned integer
relation

real array variables
real variable

a language symbol
integer or real variables
real expressions

¥202 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/Io1e/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Ol.. 9+ ~-/<=>.,;:()"*7_)
or as follows:
¢ as %
[bl __‘
|
10 23 #
T " £(or$)
a-z . A-Z
A-Z . #A-#Z
» 1=
sp . blank column
nl s end of card

The space symbol only has significance in messages
which may be printed.

Statements in the language are terminated either by a
newline or by a semi-colon.

K Autocode

1.2 Instructions and directives

There are basically two kinds of statements in a
programming language: instructions, and directives.
The instructions of a program are held inside the com-
puter and are obeyed when the program is run. Direc-
tives, on the other hand, are orders to the compiler and
do not exist at run time. The distinction between
instructions and directives is sometimes nebulous.

1.3 Numbers

Essentially two types of number exist in Autocode,
integer and real.

An integer number is stored exactly and lies in the
range —2f-1 to 28-! — 1, where B is the number of
bits used for integer arithmetic (on KDF9, 8 = 48 and
on System/360, 8 = 32).

A real number is stored in a floating point representa-
tion. Its modulus is either zero or lies in the range
10~* to 10** (on KDF9, « = 38 and on System/360,
o« = 75). The accuracy to which a real number can be
stored is § significant decimal digits. (On KDF9,
8 = 11 and on System/360, § = 16.) The number of
bits used to hold either type of number is y. (On
KDF9, y = 48 and on System/360, y = 64.)

1.4 The computer store

The storage provided by Autocode falls into two
categories, main and auxiliary. The main store can hold
1,024 words of instructions and at least 6,144 numbers.
The block of instructions is known as a chapter and all
programs are divided into chapters. The auxiliary store
can hold 102,400 numbers although part of this store is
used to hold the Autocode program.

All variables are referred to by single letters, integer
variables by the letters i-t and real variables by the
letters a—h and u-z.

There are two kinds of variables, scalar or special
variables and array or working variables. Space is
allocated to an array by the directive

AN
which allocates space to the N 4- 1 variables
A0, A1, .. ., AN

Special variables do not need to be declared.

1.5 Comments

Programs may be annotated with comments. A
comment consists of a string of symbols enclosed in
brackets and is ignored by the compiler.

2. Integer and real assignment instructions

An assignment instruction is used to assign a value to
a variable. An expression is a rule for computing a
value, and an assignment instruction consists of a
variable and an expression.

161

Expressions are classified by the types of values they
define. Thus, in particular, there are integer expressions,
denoted by 7, J, K and L, and real expressions, denoted by
X, Yand Z. Expressions are also used as subscripts and
arguments of functions—in fact wherever a value is
required.

There are 104 special variables

ab,...,z,A,B,....Z,a,b,..,z,A,B,...,Z
and up to 52 arrays with names
ab,...,z,A,B,...Z

A reference to an array variable consists of the name
followed by a subscript. A subscript is either an integer
or an integer expression in brackets. In addition, the
subscript of a real array variable can be an integer
variable. Thus

i, J', k3, P(Q(R)) are integer variables and
a, B’, ¢3, Di, E(j + 3) are real variables.

2.1 The constants facility
A list of constants may be stored in a chapter and

referred to as an array, by preceding the list with the
directive

constants A

where the letter is of the same type as the constants
which follow. The constants are referred to as

A0, A1, ...
Integer constants are preceded by the symbol =, thus:

constants i
=0; = —1; =77

Real constants may be written with a decimal point
and a decimal exponent and are preceded by + or —,
thus:

constants a
+1
—2-4
—3-5,6
+1, —7
The constants are only available in the chapter in
which they are declared.

2.2 Functions

A function in K Autocode is written as a ¢ followed
by the name of the function and possibly an argument
list in brackets.

A function, like an expression, defines a value and is
classified by the type of value it produces. The definition
of an integer function (a function which defines an
integer value) is preceded by

i
and the definition of a real function by

éx:

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

K Autocode

2.2.1 Elementary functions

In addition to the elementary mathematical functions,
the following functions are available:

éx: ¢radius (X, Y) Result is v/(X? + Y?)

—1, X <0
di: sign (X) Resultis <0, ¥ =0

+1,X>0
i: Pminusone (I) Result is (—1)

i: divide (I, J, IV) Result is the quotient of I/J
and remainder is assigned
to the integer variable IV

If the value of an argument is found to be outside the
permitted range, control is transferred to the instruction
labelled 100, if this exists. (See § 3.1 for description of
labels.) The programmer can then use the function
¢error (which has an integer result in the range 0-21)
to determine the cause of the error. If there is no label
100, the program is terminated and a postmortem given
(see §9.4).

2.2.2 Array functions

The functions described below have a one-dimensional
array as one argument.

bi: dmax (Ap, 1, J)

Here Ap is the first element in a set of either real or
integer array variables. The function scans the set of
variables

A(p + 1) to A(p + J)

and gives as its result the position of the maximum
element of the set relative to Ap, i.e. the maximum
element itself is

A(p + ¢max (Ap, 1, J))

If two elements of equal value qualify for selection, the
one with the smaller subscript will be chosen.

$x: ¢poly (Ygq, X, I)
This function evaluates the polynomial obtained by
taking I 4- 1 coefficients from the real array commencing

with Yg, i.e. the result is

7
X Y(g+)X
éx: ¢chebyshev (Yq, X, I)

This function gives as its result the value of the
expression

I
0:5Yg+ Z Y(g+ D)Ti(X)
i=1
where Tr(X) is the Chebyshev polynomial of degree r.

2.2.2.1 Array instructions
In addition to the matrix instructions described in § 8,

162

there are

copy (Ap, Bq, I)
which copies [variables commencing with Bg, one at a
time, into Ap, A(p + 1), ... and

clear (Ap, Aq)

which sets the variables 4p to 4g(g > p) to zero.

2.2.3 Logical functions

These functions operate on integer values and depend
upon the fact that these values are held in binary format.
Hence they imply a measure of machine dependence.

The functions
di: dnonequiv (I, J,...)
di: dand (I, J, .. .)
di: dor (I, J,..))
are unusual in that they may have a variable number
(two or more) of arguments.

bi: pshl (I, T)

di: bshe (1, J)

di: ¢sha (1, J)
In these shift functions (logical, cyclic and arithmetic)
the value [is shifted, left or right, through J places.

oi: pbits (I)

The result of this function is the number of 1 bits in 7.

2.2.4 Packed data

Packed data may be extracted from an array of integer
variables by the function

iz $string (Ip, J, K)

which selects K bits, K< B, from the integer array
commencing at Ip, starting with bit J. The reverse
operation, that of replacing a string, is performed by
the instruction

storestring (Ip, J, K, L)

which selects the least significant K bits of L and stores
them in bit positions J,J + 1, ... in the array com-
mencing with Ip.

2.2.5 Calculation of pseudo-random numbers
The function
¢x: ¢random (IV, 1)

where IV is an integer variable, calculates the next value
in a sequence of rectangularly distributed pseudo-
random numbers in the range 0 to 1. The particular
sequence selected depends upon the initial value assigned
to IV.

The function
éx: drandom (IV, 2)

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

K Autocode

calculates the next value in a sequence of normally
distributed pseudo-random numbers in the range —6 to
—+6. The distribution has nominal zero mean and unit
standard deviation.

2.3 Expressions

Expressions are built up from constants, variables,
functions of expressions and expressions in square
brackets. Multiplication is indicated by the juxta-
position of the two operands and takes precedence over
division. Hence a/bc means a/[b x ¢]. The factors of
an expression are always evaluated from left to right.
Exponentiation is not permitted.

Integer expressions consist solely of integer factors.
They are evaluated with fixed point arithmetic and
division is not permitted.

Examples:
3[i +j); pq+ dintpt (x + y)

Real expressions may contain both real and integer
factors and the constant 7. Real expressions are
evaluated with floating point arithmetic.

Examples:
3:1x+ y/dz; dexp (mydlog(x))

When an expression is enclosed in square brackets,
its value may be assigned to a variable of the same type
by writing

[E=>V]
The assignment is performed immediately the expression
has been evaluated. For example

(j+1=>j)=p
is equivalent to
J=Jj+1
i(jy=p
2.4 Assignment instructions
An assignment instruction consists of one or more
variables and an expression.
Examples:
i=1; plgg=g=r+3s—1
x =y =z — 2nd¢sin (a)

In performing an assignment, the expression on the
right is evaluated first. Its value is then assigned to the
left parts, one at a time, from right to left. Thus

L1=12=...Ln=E
is equivalent to
W=E; In=W; ... L2=W; LI=W

where W is a working space location.
A query symbol, ?, may be written at the left of an
assignment statement. If the query option is specified

163

in the job heading (see § 9.4) the value of the expression
in a queried assignment will be printed each time the
instruction is obeyed. If the program is run ‘without
queries’, all query symbols are ignored.

3. Control statements
3.1 Labels
A label consists of an integer followed by a right
bracket
N)
The directive
labels: N

where 1 << N < 1023, may appear before the first
instruction of a chapter. It specifies the extent of the
labels field to be used within the chapter, and con-
sequently how much space remains for instructions.
After the directive, labels 1 to N inclusive may be used.
If the directive is omitted,

labels: 127

is assumed.

3.2 Unconditional jump instructions

Jump (I)
where I is an integer expression, transfers control to the

instruction labelled 7 in the current internal procedure
or chapter. Hence it can be used as a multiway switch.

3.3 Subsequences
The instruction
Jjumpdown (I)

in addition to transferring control, places the address of
the instruction following the jumpdown in a stack.

return

transfer control to the address at the top of the stack.

3.4 Conditional operations

Several facilities depend upon the truth or falsity of a
relation R. A relation may be either a simple relation,
i.e. a comparison of two expressions, or a logical com-
bination of simple relations.

Examples:
i#j
(@a>b)and (b >c)or (x =)
not ((i < j) nonequiv(m < n))

In a relation, all the operations have the same precedence,
and evaluation proceeds from left to right. The order of
evaluation may be modified by using brackets.

Each simple relation gives rise to a numerical value
of —1 or zero depending on its truth or falsity. These
values are combined by the logical operators and the
relation is true if the result is non-zero.

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

K Autocode

3.4.1 Conditional expressions
Expressions in square brackets may be made to
depend upon relations
[(R1(E1, (R2)E2, . . ., E, 4,
Example:

[(@ > b)c, d < e)f g]

To find the value of the expression, the relations are
tested in order from left to right. The expression
following the first true relation is taken as defining the
value of the conditional expression. If none of the
relations is true, the unqualified expression, E, ; is
used. A conditional expression may be used wherever
a value 1s required.

3.4.2 Conditional instructions
The instructions

if(R)

orif (R)

else

continue
may be used to select alternative courses of action in a
similar way to conditional expressions.

Example:

if(a = 0); print('a = 0"

orif(a < 0); print(‘a < 0')

else; print('a > 0"

continue

3.4.3 Conditional jump instructions
Both the jump and the jumpdown instruction can be
made conditional by appending a relation.
Examples:
Jump (1) a > b
jumpdown ([(a > b)i, j]) (¢ > = d) and (e < =f)

3.5 Repeat cycles
w=1InJK
repeat
These instructions are used to form a repeat cycle.
Their effect is equivalent to
w=I

...

Jump (2} IV =K
‘error if ¢sign (K — 1IV) #~ ¢sign (JY
w=i+4J
Jump (1)
2) ...

3.6 Terminating the calculation
end

This instruction returns control to the operating
system and signifies that the computation has finished
correctly.

164

4. Input and output

The facilities described in this section are concerned
with reading data from the input stream (i.e. data
immediately following the program) and printing results.
Only a single stream of input and output is considered
(but see § 7.1).

Autocode does have facilities for input and output to
other peripheral devices and these are described in § 5.

4.1 Reading decimal numbers

When a read instruction, which specifies n variables,
is obeyed, the next n data values are assigned to the n
variables one at a time from left to right.

Example:
read (a, b, i, wi)
would accept as data

3-1; —4-2,17
5; (code)
203; (weight)

This would assign 31 to @, —4-2 x 107 to b, 5to i
and 203 to w5. Comments can be placed between data
values which are terminated by newline, semi-colon or
double space.

4.2 Printing decimal numbers

A print instruction specifies a list of items to be
printed. An item may be a string of symbols in quotes,
a single symbol to be printed a number of times, or an
expression.

Example:

If x =321-4 and y = —0-75 the instruction
print('temp="; x, 3, 2; ()10; 'press="'; y, 0, 4)

produces

temp= 32140 press=—17-5000, —1

The layout of a printed number is determined by the
two expressions I and J written after it.

If I and J are non-zero, the layout of the number is
{sp or —>{{ integral digits) . {J fractional digits>{sp>{sp>
If J is zero, the decimal point and the fractional digits
are omitted. Non-significant zeros at the leading end
are replaced by spaces.

If I is zero, the number is printed in floating point style
{sp or —Xdigit) - {Jfractional digits),{decimal exponent)
{spY<sp). If J is zero, the decimal point and the frac-
tional digits are omitted.

4.3 The readword instruction
readword (V, IV1, IV2, IV3, 1)

This instruction is used to read in a string of symbols,
or word. Any numeric symbols are assembled to form
a value which is assigned to the variable V. The sum
of the internal codes of any non-numeric symbols

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

K Autocode

occurring in the word is assigned to 7¥1. The number
of numeric symbols is assigned to IV2 and the number
of non-numeric symbols to IV3. If the value of the
numeric symbols is outside the range permitted for V,
or if any non-numeric symbols are encountered, control
is transferred to the instruction labelled 7. The integer
function

dpcode(‘S15283 .. .)
gives the sum of the internal codes of S1, §2, S3, . ..

4.4 Manipulation of texts

A text is a string of symbols enclosed in square
brackets. A text may be read from the input stream
and packed into an array of integer variables, printed
out, simply copied, attached to another text or moved
from the chapter space to an array. In addition, the
individual symbols of a text can be inspected and
replaced.

printtext (Ip)
prints the text (but not the enclosing brackets) which is

stored in the integer array starting at /p. The output is
terminated by the closing square bracket.

concatenate (Ip, Jq, IV)

attaches the text stored in Jg to the text stored in Ip,
eliding the internal pair of brackets. The final length is
returned in /V.

storetext (Ip, 1V)

[symbols]
stores the symbols in the array starting at Ip and assigns
the number of variables used to 7V.

di: dsymbol (Ip, I)
gives as its result the /th symbol packed into the array
starting at Jp.

storesymbol (Ip, I, J)

is used to replace the /th symbol packed into the array
starting at Ip with the value of J.

4.5 Input and output of symbols

A number of instructions and functions are available
for reading, printing and testing symbols.
The function

¢i: dreadsymbol
gives as its result the next symbol in the data stream.
The function
di: plastsymbol
gives the result of the most recently obeyed ¢readsymbol.
This function can be used after any read instruction,

e.g. read(x), to determine the terminator.
The function

iz dnextsymbol

gives the symbol that will be read by the next

¢readsymbol. This function can be used to advantage
before a read instruction.

The function
@i: ¢code (S)
gives the internal code of the symbol S.

The instruction
printsymbol (I)

prints the symbol whose internal code is given by I.

4.6 Miscellaneous output facilities

caption
symbols

causes the symbols to be printed (excluding the newline
at each end)

nlcaption
symbols

causes a newline and the symbols to be printed. In
addition there are

space
spaces (I)
newline
newlines (I')
newpage

5. File processing

Autocode allows files on peripheral devices to be
accessed either randomly or sequentially. On KDF9,
only magnetic tapes may be used, but in either mode.
On System/360, any peripheral may be used but tapes,
printers and card devices can only be accessed sequen-
tially. File labelling methods also differ. A file is
connected to the Autocode system via a fictitious channel
when the file is claimed or opened.

5.1 Random access

A random access file consists of a continuous set of
locations numbered 0, 1, Transfers of information
take place between these locations and array variables.

readfile (I, J, Ap, K)

transfers K numbers from locations J,J - 1, . . . on the
file on channel / to the array variables 4,, 4,,,,

writefile (I, J, Ap, K)
transfers K numbers from an array to the file on channel
L

5.2 Sequential access

In this mode of operation the locations of a file are
grouped into blocks called records. Records need not
all be the same size and are not numbered.

readrecord (I, Ap, J)

transfers the contents of the next record from the file

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

K Autocode

on channel I to the array variables 4, 4,
If n is the number of numbers in the record, the actual
number transferred is min (n, J).

writerecord (I, Ap, J)

transfers a block of J numbers from an array to the file
on channel I. Records can only be written to the end
of a sequence of records, i.e. it is not possible to read a
record that may remain on the file beyond the record
just written.

rewind (I)

causes the file on channel 7 to be positioned with the
recording head at the load point.

skiprecord (I, J)

causes the file on channel 7 to move J records past the
recording head. The skip will be forwards if J is positive
and backwards if J is negative.

There are also facilities for testing the state of ‘parity’
and whether either end of a file has been reached.

6. Facilities for complex arithmetic

A complex variable is denoted in Autocode by a pair
of real variables, the real and imaginary parts, enclosed
in single brackets. The functions sin, cos, exp, log, sqrt
and conjugate may be used in expressions.

Examples:

(a, b) = (c, d) (ul + u2, vl + v2)
(x,) = ésqrt ((x, y))
(a, b) = (b, a)

Apart from query printing, there are no special
instructions for reading and printing complex numbers.
These operations can easily be done with the real
instructions, e.g.

read (x, y)
print (X,1,6; Y, 1, 6)

7. The auxiliary store for numbers

The auxiliary store consists of 102,400 locations
numbered 0, 1, ..., 102399. Some of these locations
are used to hold the chapters of the program. The
instruction

readdown (I, Ap, J)

transfers J numbers from auxiliary locations I, 7 1, . . .
to the array variables 4,, 4,4, A single number
may be transferred to a special variable. The instruc-
tion

writeup (I, Ap, J)
causes a transfer to take place in the opposite direction.

7.1 Auxiliary store input output

The auxiliary store may also be thought of as a large
array of symbols numbered 0,1, The instruction

open output (I)

166

routes all subsequent output (apart from failure messages)
to auxiliary store symbol positions I,/ + 1,.... The
instruction

close output (IV)

terminates the current stream and returns the address of
the last symbol in IV, so that the stream can be re-opened.
The instructions

open input (I)

and close input (IV)
are used to control the source of input in a similar way.

In Autocode, it is possible to return to the compiling
mode and compile additional items of program (rmp
instruction, meaning read more program, see § 9.5). If
auxiliary store input is used, the program to be compiled
can be held in symbolic form in the auxiliary store.
Consequently a translation program, e.g. Mercury
Autocode to K Autocode, could place its output in the
auxiliary store and then obey the sequence

open input (. . .)
rmp

to compile it. The net effect is to present the user with
something very like a Mercury Autocode compiler.

8. The Autocode matrix scheme

The matrix scheme permits operations to be performed
on arrays of numbers held in the auxiliary store. The
auxiliary address, M, of the first element is used to refer
to the array. Two dimensional arrays are stored by
rows. The dimensions of the operands are stated
explicitly in each operation.

Each matrix operation is essentially an assignment
instruction, although it is written in the same way as a
function:

doperation number (parameter list)

The matrix operations provide facilities for input,
output, manipulation and arithmetic. Three typical
operations are given.

5 (M, 1, J, K)
prints the / X J matrix in M in tabular form. The
elements of the matrix must be real numbers and they
are printed in floating point style with K significant
figures. As many columns as possible are printed across
a page.

SLL (M1, M2, 1)
extracts the diagonal of the square matrix of order [/
stored in M2 and stores it as a vector in M1.

$30 (M1, M2, M3, X, Y, 1, J)

forms the linear combination of two I X J matrices
stored in M2 and M3, i.e.

(M1) = X (M2) + Y (M3)

The special cases which arise when X and Y are 0 or 1
are recognised.

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

N K Autocode

9. Program assembly
9.1 Chapters

A progam is divided into one or more chapters each
of which may contain about 200 Autocode instructions.
A chapter is preceded by the directive

chapter N
where 0 < N < 100 and terminated by the directive
close

The chapters which comprise a program must be
compiled in monotonically increasing order with the
exception of chapter O which must appear at the end.
A program is always entered at the first instruction of
chapter 0. The instruction

across (I, J)

transfers control to the instruction labelled 7 in chapter J.
The instruction

down (I, J)

i1s similar but, in addition, stores the current chapter
number and the address of the instruction following the
down in a stack. The instruction

up
takes the most recently entered chapter number and

address from the stack and transfers control to this
address and chapter.

9.2 Internal procedures

Procedures in Autocode are identified by numbers and
enclosed by the directives

procedure N
and finish

An internal procedure is contained within a chapter.
It may only be called from within that chapter. Full
recursion is allowed.

Three instructions are used to establish communication
between a calling program and a procedure. They are

call(I,J, E\,E2,...; Ap, Bq, .. .; V1, ¥V2,..))
data (U1, U2,...; A, B,...)
results (F1, F2,...)

The data and results instructions serve as the entry and
exit points in a procedure, and the call instruction is used
to transfer control to label I in procedure J.

When the call instruction is obeyed, a private set of
special variables is provided for the procedure and its
own list of array bases is set identical to the current set
of array bases, providing access to global arrays. Next,
the values of E1, E2, . .. and the addresses of Ap, Bg, . . .
are passed to the procedure. When the data instruction
is obeyed, these values are assigned to Ul, U2, . . . (any
type conversion being done automatically) and the
addresses are used as the bases for the formal arrays
A, B, When the procedure has completed its task,

167

the results instruction is obeyed, the values of F1, F2, ...
are passed back to the call instruction and assigned to
the variables V1, V2, . ..

In addition to global and formal arrays, a procedure
may declare local arrays with dynamic bounds by the
instruction

local A: I

Inside a procedure, there is a dynamic equivalence
facility. The instruction

equivalence (A, Bg)

assigns the address of Bg to the base for the array A.
References to A0, A1,... are then references to
Bg, Bg+1,...

A simple procedure to calculate the average of a set of
real numbers could be

procedurel

1) data (n; x)
a=0
i=01,n—1
a=a-+ xi
repeat
results (a/n)
finish

which could be called with the instruction

call (1, 1; p + 1; ym; b)
to calculate the average of y(m) to y(m + p) and assign
the result to b.

9.3 External procedures

An external procedure consists of one or more chapters
enclosed in the directives

procedure N
and finish

Several external procedures may be included between
the main program and chapter 0.

An external procedure may be called from anywhere
in the program, by the same calling sequence as for an
internal procedure, and it is always entered at its first
chapter. External procedures may contain internal
procedures.

9.4 Job heading

When an Autocode job is submitted for processing, it
is preceded by an Autojob heading. This consists of the
word ‘autojob’, optionally some message for the operator,
and a job statement which specifies the estimated and
maximum running times and any of five options. This
statement is followed by the title which identifies the job.

Example:

autojob
this job requires three magnetic tapes.

Jjob (5/10, p, q, 1, 5, 1)
title

demonstration

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

K Autocode

In this example, the job statement specifies an esti-
mated running time of 5 min, a maximum time of
10 min and all the options. The various options are:

p to produce a postmortem in the event of a failure,
i.e. the names and values of all variables currently
defined.

g to run the job in the query printing mode.

r to restart the job at the first instruction in chapter
0 after a failure. This allows several sets of data to
be processed even if one set unexpectedly fails.

s to produce a listing of the source program.

t to produce a listing of the translated program.

If an option is not required, it is omitted, e.g.
Job (5/10, s).

9.5 Reading more program
The instruction
rmp

Reference

BROOKER, R. A. (1958).
Vol. 1, p. 15.

meaning read more program, causes the system to return
to the compiling mode and read any monotonically
increasing sequence of chapters terminated by a chapter
0. The contents of the number store are preserved
during the operation. Control is then passed to the first
instruction of the new chapter 0.

The instruction is useful since it permits a linked
sequence of programs to be run, e.g. an amender and
the amended program, and also since it allows one or
more chapters to be specified as data, e.g. transforma-
tions to be applied to numerical data.

Acknowledgments

The author is indebted to Professor R. A. Brooker
for introducing him to syntax-directed compilation and
to his colleagues, both past and present, in I.C.I. Ltd.
for the success of the implementations on KDF9 and
System/360.

The Autocode Programs developed for the Manchester University Computers, Computer Journal,

Book Review

Automaton Theory and Learning Systems, Ed. D. J. STEWART,
1966, 215 pp. (London: Academic Press, 63s.)

This book is a collection of papers with a strong ‘cybernetics’
slant. It opens with a brief and very readable paper by
J. C. Sheperdson introducing the mathematical notion of
algorithm, and the need for a formal description of algorithms
such as those of Turing and of Markov to show that
some problems have no algorithm for deciding them. The
other papers are unconnected with mathematical automata
theory. Two papers (one by F. H. George and D. J. Stewart
and one by George) describe the elements of computer pro-
gramming in machine code with a few pages on logic and on
phrase structure grammars. One by W. Ross Ashby lists a
number of definitions and theorems of the algebra of sets
and indicates how they might be used to formulate a theory
of mechanisms and homeostasis more clearly than by con-
tinuous variable theory. Another paper by Stewart explains
the use of logical nets for classification and learning, and a
rather lucid contribution by A. M. Andrew surveys various
approaches to learning, discussing topics such as parameter
adjustment versus the use of a selection of key points in the

168

input space, the need for modelling the environment and
hierarchical organisation. A long and technical paper by
G. Pask describes a theoretical model for the acquisition of
skills and some supporting experimental work using com-
puter simulation and various adaptive mechanisms for
training subjects. A training machine controls learning by
adjusting the difficulty of the problems presented. This is
the only contribution which sets out to present any appreciable
amount of research by the author.

In general it would have been encouraging to be told more
of mechanisms or computer programs which have actually
been constructed and which exhibit interesting learning or
problem solving behaviour. The point has long since been
made that such performance is possible in principle, the
question is how to achieve in practice. Most of the book is
written at the level of rather elementary exposition and
readers seeking an introduction to the field would probably
have preferred a more unified treatment instead of a collection
of papers by different authors.

R. M. BurstaLL (Edinburgh)

¥20z 14dy 61 U0 1senb Aq 9t48/£/091/2/1 L/81o1e/|ulod/woo dno-olwepeoe//:sdiy wolj papeojumoq

