
Towards FORTRAN VI?

By M. J. R. Healy*

Examination of a number of FORTRAN compilers compatible with the ASA standard shows that they have
many extra features, and that several of these are common to many compilers. It is suggested on these grounds
that a 'super-standard' FORTRAN, standing to ASA FORTRAN as this does to ASA Basic FORTRAN,
might be defined.

(First received February 1968)

Scientific computing in Great Britain has changed quite
markedly since the Flowers' report appeared in December
1965, and one aspect of this change is the increased
acceptance of FORTRAN. It is now taken for granted
that any computer for scientific use will possess a
FORTRAN compiler, and that this will be compatible with
one or other of the ASA specifications (American
Standards Association, 1964, 1965). As well as this,
most FORTRAN IV compilers now offer a range of features
over and above the minimum needed for ASA com-
patibility. If these extra features are examined a certain
measure of agreement between the different compilers
is apparent, and this leads to the idea that the time is
ripe for a third level of 'standard FORTRAN' standing to
FORTRAN IV much as this does to FORTRAN II or ASA
Basic FORTRAN. This note aims at setting out some
ideas for such a language.

It is in many ways remarkable that a language as old
as FORTRAN is still in use at all, and any 'extended
FORTRAN' must be able to stand the competition of newer
languages such as ALGOL and PL/I. One reason for
survival seems to be the fact that its very limitations,
while not too serious from the user's point of view,
make it relatively easy to compile. Fast compiling is
important for a language much used in teaching since
students' exercises spend most of their time in the com-
piling phase, and indeed the same consideration is
important in any research-based computer centre where
the ratio of new programs to old will always remain
high. It follows from this that an extended FORTRAN,
while aiming to remove some of the limitations of
FORTRAN IV, should remain simple in structure, and
that it may be necessary to exclude features which, while
occasionally useful, would complicate the compiler
structure to an unacceptable extent.

Another historical feature of FORTRAN is the ease
with which it has been extended to cover special appli-
cations—rather diverse examples can be found in syntax
description (Leavenworth, 1964), in list processing
(Weizenbaum, 1963) and in simulation (Belkin and Rao,
n.d.). This implies that an extended FORTRAN should
remain a general purpose language—no attempt should
be made to build special purpose features into it. It is
a positive advantage of special purpose subroutine
packages that their users have access to a general purpose

language (see, for example, Healy and Bogert, 1963),
and there will be sufficient pay-off if this language is
made as easy to use as possible.

FORTRAN has always been a language willing to profit
by knowledge of its own implementation—an obvious
example is the EQUIVALENCE statement. In this it
differs in outlook from ALGOL which is inclined to go to
extremes to remain pure from machine-dependence.
There seems no reason to blur this distinction; there is
much to be said for both points of view, and it is as
well to have each of them embodied in a widely available
language.

The following, then, is a list of suggested extensions
that might lead to a definition of an extended standard
FORTRAN. Obviously, they do not constitute such a
definition; I have not considered details (such as the
permitted length of identifiers) which I regard as of
secondary importance.

1. Assignment statements
The obvious extension needed here is the use of mixed-

mode expressions. For sheer inconvenience, the rule
which forbids X = Y/N ranks high among FORTRAN IV'S
minor defects. The exact rules for the insertion of
transfer functions of course need to be specified, but no
difficulty of principle is involved.

Another handy construction which would be simple to
implement is the ALGOL-like A = B = C + D. A con-
vention is needed when the left-hand side identifiers
differ in mode; it is best if the value of the right-hand
side expression is assigned to each independently, so
that I = X = A and X = I = A mean the same thing.

Additions to the list of built-in functions may be
considered here. A useful pair would be DOUBLE
(X,N) and HALVE (X,N), giving multiplication and
division by powers of 2, and integer equivalents of these
giving rise to logical right and left shifts. All these
should operate correctly with N negative or zero. It
should also be possible to extract any particular bit or
combination of bits from an integer quantity, and also
to count the number of one-bits. Clearly, the results
of these latter operations will vary with word length
and will thus be machine-dependent, but this seems a
poor reason for rejecting them—word-length-inde-

* Medical Research Council, 172 Tottenham Court Road, London, W. 1.

169

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/169/378456 by guest on 13 M
arch 2024

Towards FORTRAN VII

pendent arithmetic is a myth, and a program which
compiles into 24K of store is machine dependent in
that it will not run on a 16K machine. The operations
correspond each to one or a few machine instructions;
their continued existence in machine order-codes argues
that they are generally considered useful; and it seems
unreasonable that they should be barred from a higher-
level language on legalistic grounds.

It would be useful to have a version of the DATA
statement which could be invoked dynamically during
program execution. The main use for this would
probably be the setting to zero of a set of locations, the
purpose served by the ERASE and CLEAR statements
of BTL and Atlas FORTRAN V.

2. Control statements
Integer expressions should be allowed as the parameters

of a DO statement, and it should be possible for a DO
statement to count backwards, so that

DO 10 I = N —1,0, —1
becomes legitimate. These extensions are both simple
and useful enough to be uncontroversial; other possi-
bilities are perhaps more a matter for discussion.

(a) Real expressions as DO loop parameters. This
would allow parameters such as T = 0, PI, PI/180. The
difficulty is, of course, the effect of rounding errors on
the test terminating the loop. On balance, it seems best
to keep this difficulty out in the open by making the
programmer cope with it explicitly.

(b) ALGOL-like constructions, in the style

DO 10 FOR I = integer list
DO 10 WHILE logical expression.

If the first is implemented, it should allow for the
inclusion of ordinary DO-controlling triples in the list.

The arithmetic IF statement could readily be provided
with a 'next statement' facility as in HARTRAN—almost
always one or two of the three paths are to the next
following statement, and this should not need an explicit
label.

The logical IF needs a rather more far-reaching
extension to remove the limitation that only a single
statement is executed when the condition is satisfied.
To achieve this demands a way of bracketing together a
number of statements. One technique involves state-
ment brackets BEGIN and END, as in ALGOL (this is
used by the Atlas FORTRAN V, where it is associated with
the provision of block structure). Somewhat simpler is
the SDS technique of allowing a satisfied IF to cause
the bringing in of the whole line of text on which it
stands, and then to allow more than one statement per
line—this is easily done by introducing a statement
separator such as a semi-colon (which also is useful in
other contexts). Combining this with the use of con-
tinuation cards enables a substantial piece of text to
follow the IF bracket, and makes up to some extent for
the lack of an 'else' construction.

These two proposals would remove some of the stiff-
ness which sometimes prevents a FORTRAN programmer
from writing his logical tests the natural way round.
They also cut down on the number of labels in a pro-
gram, which helps to speed up compilation.

3. Input/output
This is the place where the largest changes seem called

for. FORTRAN input/output is in many ways very
powerful, but it has its weaknesses, and its complexity
makes it a stumbling-block for beginners. The FORMAT
idea was originally designed to describe the layout of a
punched card, and it does this very well. It is less
effective for a line of printed output, and often quite
inappropriate for paper tape. A whole range of exten-
sions such as 'widthless' and adjustable formats have
been tried to overcome these difficulties, and in addition,
formatless output in some standard layout has been
provided. It would be far better, while retaining for-
matted input and output, to provide as well an inde-
pendent single-number input/output system such as
that originating in Mercury Autocode and developed in
its successor languages, EMA and CHLF. Input from
paper tape or equivalent media is by a real function
which reads in characters up to a terminating character
(such as space or end-of-line) and returns a single
number. The corresponding output routine has two
arguments giving the number of places before and after
the decimal point; if the first or second of these is zero,
output is in floating or integer form, respectively. Other
routines are needed to output a number of spaces, to
move up a number of lines, to move to a new page and
to input or output a string of characters. This set of
routines would share a good deal of the input-output
machinery already present in the compiler.

Formatted input-output must be retained, and not
only for compatibility reasons; there are probably as
many cases in which the use of explicit terminating
characters is positively inconvenient as there are of the
opposite state of affairs. A few modifications would
make the system handier to use. On the output side,
an obvious requirement is a means of specifying textual
(Hollerith) output without counting characters. The
usual limits on BCD record length are irksome for tapes
written off-line, and means should be provided for
extending them when necessary.

A rather general point is involved in repairing a
marked weakness of many orthodox FORTRAN compilers,
namely the action taken when the input routines
encounter a faulty character or an end-of-file symbol.
Not only are these commonly treated as catastrophic
failures leading to program abortion, but the amount of
information provided concerning the fault is often
scanty. This weakness extends to the built-in functions
like logarithm and square root. A partial solution is
provided in 360 FORTRAN, in which failure destinations
can be specified in input statements. A second possi-
bility could be based on another Mercury Autocode
feature. This would permit any run-time fault to cause

170

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/169/378456 by guest on 13 M
arch 2024

Towards FORTRAN VII
a jump to a particular label with a code number identi-
fying the particular fault placed in an integer variable.
The actual label and variable should be specifiable by a
system subroutine, so that they can be changed dyna-
mically. If not specified, default action as at present
would be taken.

There is sometimes a need to examine an input record
before deciding what format to use in converting it.
This leads to the idea of store-to-store conversion—
quasi-input/output operations in which a named area
of store takes the place of the usual peripheral (some
further advantages of this system have been pointed out
by Pyle, 1962). Somewhat related to this is the need
for column-image input from punched cards; this would
be the more useful in the light of the bit-handling func-
tions suggested above. This type of input would also
be appropriate in a paper-tape context, both to combat
the lack of code standardisation in this medium and
also to accommodate tapes punched in 'fancy' codes by
automatic data-acquisition equipment.

More far-reaching is the question of character handling.
In standard FORTRAN characters can be input and output
using A-conversion, but operating on them internally
in any way is difficult. A number of means of coping
with this have been adopted by different compiler
writers, often involving new data types such as TEXT
(Atlas FORTRAN V) or CHARACTER (CDC). The
awkward matter of machine dependence arises again,
with particular force when the contrast between word-
organised and byte-organised machines is borne in mind.
As throughout, a simple solution is to be preferred over
a complex one. One such could involve the storage of
character strings in packed form in integer or real
arrays, a built-in integer function to extract the Nth
character of a given string, and a standardised code of
integer equivalents for the permitted character set. The
last proposal may sound fatuously optimistic, but the
existence of the ISO and ASCII codes gives some hope
that agreement on a standard could be reached. These
facilities would allow individual characters to be
extracted and compared for sorting purposes; blocks of
characters occupying whole words (or equivalent units)
would also give predictable results when handled by
integer arithmetic.

4. Subprograms and program segmentation
The main need here seems to be for multiple entries

and exits for subroutines, and again a simple solution is
probably the best. This consists in permitting labels as
subroutine arguments. It may be necessary in the

References

interests of straightforward compiling to identify a
label in a CALL statement by some special symbol
which distinguishes it from an integer; indeed two
symbols may be necessary to distinguish labels internal
to the subroutine (multiple entries) from those external
to it (multiple exits). The multiple exit feature is
commonly needed to provide error returns, and it should
be possible to relate this to the standard fault procedure
mentioned above.

There are a number of further extensions connected
with subprograms whose usefulness must be balanced
against their ease of implementation. One of these is
block structure, or subroutines defined within sub-
routines. Simpler than this is the SDS facility which
cancels the definitions of all current labels except those
explicitly insulated from its effects. In the same area
(basically that of communication between program seg-
ments) is the PUBLIC or GLOBAL facility for identi-
fying variables by name rather than by location as in
COMMON statements. A programmer often wishes
to define a subprogram with a variable number of
arguments, a facility usually restricted to assembly
languages. To allow complete freedom for recursion
would almost certainly be impermissible under the
assumed terms of reference, but this is not in any way
essential (see Strachey and Wilkes, 1961); it may well
be possible to allow for recursively usable subprograms
which are explicitly labelled as such.

Conclusion
The above discussion is unlikely to satisfy any parti-
cular FORTRAN compiler writer, who will almost surely
find that some of his brain children have been omitted.
The purpose of a standard language must, however, be
borne in mind. It is simply to ensure that a user can
run a stranger's program on his own machine with the
assurance that it will at least compile—the effects of
word length and rounding techniques make it rather
much to expect that it should give identical answers.
It is therefore not unreasonable to include only those
extensions which have proved widely useful, or which
overcome known weaknesses in the language. There is
no reason why each centre should not possess its own
super-extension for internal use provided it sticks to the
standard for communication and publication purposes.
It should also be remembered that the virtues of a
compiler are not limited to the range of statements it
will recognise; diagnostic capabilities and the ways in
which it interlocks with the surrounding operating
system are just as important.

Descriptions of most of the FORTRAN dialects referred to can be found in the manufacturers' literature. Exceptions are Atlas
FORTRAN V (for which, see Schofield, 1967), HARTRAN (York, 1964) and Bell Telephone Laboratories (BTL) FORTRAN, of which
no published description seems readily available.

American Standards Association (1964). FORTRAN V.V Basic FORTRAN—a programming language for information processing
in automatic data processing systems, Comm. Assoc. Comp. Mach., Vol. 7, pp. 591-625.

171

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/169/378456 by guest on 13 M
arch 2024

Towards FORTRAN VII

American Standards Association (1965). Appendixes to ASA FORTRANS, Comm. Assoc. Comp. Mach., Vol. 8, pp. 287-288.
BELKIN, J., and RAO, M. R. (n.d.). GASP users' manual, United States Steel Corpn., Applied Research Laboratory.
HEALY, M. J. R., and BOGERT, B. P. (1963). FORTRAN subroutines for time-series analysis, Comm. Assoc. Comp. Mach., Vol 6

pp. 32-34.
LEAVENWORTH, B. M. (1964). FORTRAN IV as a syntax language, Comm. Assoc. Comp. Mach., Vol. 7, pp. 72-80.
PYLE, I. C. (1962). Character manipulation in FORTRAN, Comm. Assoc. Comp. Mach., Vol. 5, pp. 432-433.
SCHOFIELD, C. F. (1967). A manual of the Atlas FORTRAN V language, University of London Atlas Computing Service.
STRACHEY, C , and WILKES, M. V. (1961). Some proposals for improving the efficiency of ALGOL 60, Comm. Assoc. Comp. Mach.,

Vol.4, pp. 488-491.
WEIZENBAUM, J. (1963). Symmetric list processor, Comm. Assoc. Comp. Mach., Vol. 6, pp. 524-544.
YORK, E. J. (1964). Atlas FORTRAN Manual, Atomic Energy Research Establishment, Report R-4599.

Correspondence
To the Editor
The Computer Journal

Generation of time delays on analogue computers

Sir,
I have one or two comments on the paper by Riley and
Walker (1968) dealing with rational approximations to
exp(— sTD) and their use in generation of time delays for
analogue computers (this Journal, Vol. 11, p. 72).

First, a matter of terminology: the paper uses the term
'Pade approximation' to mean any suitable rational approxi-
mation. This term should be confined to a rational function
for which the first N terms of its Maclaurin expansion agree
with those of the function being approximated; N is the
number of independent parameters. Thus in the paper only
Set 1 is a Pade approximation; the expansion agrees with
that of exp (—sTD) up to the term in ss.

Since the Pade approximation devotes all its parameters to
securing desired behaviour at the origin, it is not surprising
that it is not the best if one wants the delay of the correspond-
ing system to be approximately constant over a range of
frequencies. If 'approximately constant' is given some
precise meaning, then a well-defined problem exists.

Much work has been done in this area by circuit theorists
(Kiyasu, 1943; Thomson, 1949; Abele, 1960; Ulbrich and
Piloty, 1960). The first two deal with the Pade approximation
(although not in fact using this term) and include analytical
formulae for the delay. The others give numerical solutions
for systems with an equal-ripple approximation to constant
delay. Two results, derived from Abele's tables, may be of
interest; a, to o4 and TD have the same meaning as in Riley
and Walker, and the group delay lies within the range
TD{\ ± c) for 0 < / < /„.

Another approach is that of Hausner and Furlani (1966),
who give design tables for equal-ripple approximations both
for phase and for phase delay.

c ro/fl[TD
2la2 TD

3la3 TD
4la4 f0TD.

001 2020 9052 79-69 1126 1040
002 2041 8-975 80-63 1054 1-133

The coefficients of Sets 2 and 3 of the paper are in the same
neighbourhood as these.

Yours faithfully,
W. E. THOMSON

P.O. Research Department,
London, N.W.2
14 May 1968

References
ABELE, T. A. (1960). Ubertragungsfaktoren mit Tschebyscheffer Approximation konstanter Gruppenlaufzeit, A.E.U. Vol. 16,

p. 9.
HAUSNER, A., and FURLANI, C. M. (1966). Chebyshev all-pass approximants for time-delay simulation, IEEE Transactions on

Electronic Computers, Vol. EC-15, p. 314.
KIYASU, Z. (1943). On a design method for delay networks, / . Inst. Elect. Commun. Engrs of Japan, Vol. 26, p. 598.
THOMSON, W. E. (1949). Delay networks having maximally-flat frequency characteristics, Proc. IEE, Vol. 96, Pt. Ill, p. 487.
ULBRICH, E., and PILOTY, H. (1960). Uber den Entwurf von Allpassen, Tiefpassen und Bandpassen mit einer im Tschebyscheff-

schen Sinne approximierten konstanten Gruppenlaufzeit, A.E.U., Vol. 14, p. 451.
(Further correspondence appears on pp. 194 and 240)

172

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/169/378456 by guest on 13 M
arch 2024

