The synthesis of logical nets consisting of NOR units

By H. P. Williams*

This paper describes an algorithm for synthesising a logical net consisting of NOR units.
Starting with a logical function presented as a truth table the function is converted into a suc-
cession of NOR statements. A simplifying procedure is used which, while not always resulting

in the minimum number of NOR units, produces an economical solution.

Details are given of

how this algorithm can be programmed for automatic computation.
(First received November 1967)

In the construction of electronic and fluidic circuits it
is often necessary to construct a logical net to perform
some given logical function. These nets are often syn-
thesised from NOR units. The NOR unit acting on

two inputs, 4 and B, performs the function 4 V B
written in Boolean algebra. This is a ‘universal function’
in the sense that any function in Boolean algebra can be
constructed by using successive applications of this
function only. Hence the advantage of using NOR
units in a logical net is that no other type of logical unit
is needed.

A logical net to perform some prescribed logical
function can usually be constructed in many different
ways. Clearly it will usually be desirable to construct
such a net using as small a number of components as
possible, in this case NOR units. An algorithm is
described which, starting with a logical function pre-
sented as a truth table, converts the function to an
expression composed only of NOR statements. Simpli-
fications are performed which result in the use of an
economical number of NOR units. This algorithm has
been programmed for automatic computation.

Description of the algorithm

The method is based on successive applications of
operations described by Quine (1955). First the function
under consideration is presented as a truth table. The
truth table is always written in the way shown below
using O to signify ‘false’ and 1 to signify ‘true’. The
rows represent successive numbers written in binary
form. Table 1 gives an example of a function F of three
arguments A4, B, C.

Table 1
ABC F
000 1
001 O
010 O
011 0
100 0
101 0O
110 1
111 1

* Department of Mathematics, The University, Leicester.

173

Delete the rows of the truth table which
In the

Stage 1.
correspond to the function having value 1.
example these are rows 1, 7 and 8.

Stage 2. Simplify the remaining portion of the truth
table using the following three operations based on
those of Quine.
(i) If any two rows differ only in one column, in one
‘row the entry being O and in the other 1, delete
one of the rows and delete the entry in the other
row. In the example after performing this opera-
tion on rows 2 and 4 the result would be the single
row 0 - 1.
This operation is based on the logical equivalence,
X 4VX.p=4¢
(ii) If one row completely contains another row except
for a difference in one column, where one entry
is 0 and the other entry is 1, delete this entry in
the longer row. For example in the following two
rows the first entry in the second row would be
deleted.
0-1
101
This operation is based on the logical equivalence
XVXp=XV ¢
(iii) If one row completely contains another delete the

longer row. For example in the following two
rows the second row would be deleted.

0-1
001
This operation is based on the logical equivalence
XVX.¢=X

Each pair of rows is examined in turn and operations (i),
(ii) or (iii) performed if possible. If one of the opera-
tions is performed the comparison of all the rows is
repeated. After completion of this stage the function
can be represented as a negation of a disjunction of the
complete sum of prime implicants. In the example in
Table 1 the result is

A.CVA.BYVA.By B.C

202 UoJe € U0 359NnB Aq $0G8.E/E L L/Z/) | /oI01E/|UlWoo/ W00 dno"olWapeo.)/:Sdjy Wolj papeojumoq



Logical nets of NOR units

Stage 3. Examine the resulting rows of the simplified
truth table for a row containing only a 1.

Case (i). If such a row exists the input represented
by the column of this single entry is an input to the last
NOR unit in the net. The logical function can now be
considered in the form

XV é

where X is the input which has just been considered and
¢ is the rest of the function under the negation. The
function can also be written in the form

NOR (X, ¢)

showing more clearly that X is an input to the last NOR
unit. The other input to this NOR unit must be a net
performing the logical function ¢. After deleting the
row of the simplified truth table containing the single
entry 1, if no rows of the truth table remain then this
NOR unit has no other inputs. If only one row remains
and this consists of only an entry 1, the column of this
entry gives the other input to the NOR unit. Other-
wise the remainder of the truth table is expanded into
the standard form. This can be done by comparing the
entries in each row of the remainder of the truth table
with the corresponding entries in each possible row of
the standard truth table. Where these corresponding
entries are equal the row of the standard truth table is
retained. For example if the remainder of the truth
table consisted of the single row — 0 —, on comparison
with the standard truth table shown in Table 1 it can be
seen that the second column in rows 1, 2, 5 and 6 is 0.
Hence these rows are retained and the row —0 - has
been expanded into the four rows:

000

—_—— O
[N N ]
— )

These rows are now deleted from the standard truth
table such as Table 1. The remaining truth table is
now simplified as in stage 2 and the whole procedure
repeated producing a logical net for the function ¢
which connects onto the last NOR unit.

Case (ii). If no row containing only a 1 exists then
none of the external inputs goes to the last NOR unit.
This is the case in the example where the function has
been expressed in the form

A.CyVA.By A.BV B.C

In this case the rows of the simplified truth table are
split up into two sections if possible so the function can
be considered in the form

¢V

or alternatively in the form

NOR (¢, ).

174

4B

N ED
® 10
=N =N
©@ © = ©® ©

The inputs to the last NOR unit must therefore be
logical nets representing the functions ¢ and . These
functions are considered separately. Each section is
therefore considered one at a time. The rows of the
first section are expanded as in case (i) above. These
rows are then deleted from the standard truth table
which is then simplified as in stage 2, and the whole
procedure is repeated producing a logical net for the
function ¢ which is connected to the last NOR unit.
The function ¢ is considered in a similar manner. If it
is not possible to split the rows of the simplified truth
table into two sections, i.e. we have only one row left,
one of the inputs to the last NOR unit is left blank and
this single row considered as the other section and
treated as before.

After repeating these procedures a sufficient number
of times the whole function is represented as a net of
NOR units.

The example given above is now considered in detail.
After stage 1 and stage 2 have been performed for the
first time the resulting truth table is

1

1

I OO
SO = |
I

This shows that the function can be represented in the

form

A.CVA.BVA.BV B.C

Since no rows have only a 1 as entry NOR unit 1 as
shown in Fig. 1 has no external inputs. The inputs are

202 UdJe €1 U0 359NnB Aq $0G8.E/E /L L/Z/) | /oIoNE/|UlWoo/ w00 dno"olWapeo.)/:Sdjy WOy papeojumoq



Logical nets of NOR units

logical nets representing the functions ¢ and i where
p=A.CV A.B
y=A4A.BV B.C

The function ¢ is represented by the first section of the
truth table which is

0-1

01 -

These rows are expanded to give the following rows

001
011
010

When these rows are deleted from the standard truth
table and the resulting truth table simplified the result is

-00
1 -~

This shows that NOR unit 2 has 4 as an input. The
first row of this truth table is expanded and the rows
deleted from the standard truth table. After simplifi-
cation the result is

--1

-1-

This shows that NOR unit 4 has two external inputs,
B and C, and that no more NOR units connect into
NOR unit 4.

The function ¢ is now considered. This is represented
by the second section of the first truth table which is

10 -
-01

When these rows are expanded and deleted from the
standard truth table, after simplification the following
truth table results:

0-0

-1-

This shows that NOR unit 3 has B as an input. The
first row of the truth table is expanded and deleted from
the standard truth table. After simplification the
following truth table results:

|
1 --

This shows that NOR unit 5 has two external inputs A
and C, and that no more NOR units connect into NOR
unit 5. The net is therefore completed.

It is clearly not often practical to synthesise logical
nets by performing these procedures manually. Using a
computer, however, the synthesis can be performed very
rapidly. The initial data for such a computation need
only be a number specifying the number of inputs being
considered (in the example this number is 3) and the
numbers of the rows of the standard truth table corre-

175

sponding to the function being considered having value 1.
This algorithm has been programmed and details of this
are now given.

Programming the algorithm for computation

In order to compute a net it was found convenient to
consider a maximum net in which two NOR units
connect to each NOR unit in the net. This net is made
sufficiently large that any possible net would be a proper
part of it. Each NOR unit in the maximum net is
numbered in a standard way. This serves as a useful
framework. A cycle of the algorithm is performed for
each NOR unit in the final net. After the completion
of each cycle the computation moves on to consider a
NOR unit with a higher number, or if this particular
branch of the network has been completed it goes back
to a lower number on the branch and then ascends to a
higher number on another branch.

It is necessary to store certain numerical arrays.
main arrays are now described.

(i) An array consisting of Os and 1s such as Table 1
where each row represents a successive number in
binary form. For a computation of a net with n external
inputs this array would have dimensions n X 27, At
each cycle in the algorithm certain rows of this table
are ‘deleted’ by overwriting with other figures and the
remainder of the table simplified using the three
operations described.

(ii) Each NOR unit in the net can be regarded as the
last NOR unit in some subnet performing a certain
logical function. Therefore, associated with each NOR
unit there must be a representation for this logical
function. This is done by means of an array listing the
numbers of the rows of the standard truth table which
correspond to the function having value 1. Since the
rows of the standard truth table are successive binary
numbers the numbers of the rows can easily be com-
puted. As there is a one-dimensional array associated
with the number of each NOR unit the total array is
two-dimensional.

(iii) There can be up to two external inputs to each
NOR unit. These external inputs are numbered. Asso-
ciating these two numbers with the number of each
NOR unit gives a two-dimensional array.

(iv) One of the dimensions of the array (ii) will vary
with the number of each NOR unit considered. Asso-
ciating this dimension with the number of each NOR
unit gives a one-dimensional array.

The program was written in FORTRAN IV and run
on an IBM 360 computer with a core storage of 64K.
It was found convenient to limit the program to syn-
thesising nets with up to 8 external inputs, i.e. dealing
with logical functions of up to 8 variables. Large
amounts of core storage would have been used if all the
arrays had been stored in core. Array (ii) was therefore
stored by writing each row of it as a record on a magnetic
disc. Since it was only necessary to read a record for
each NOR unit and to write up to two records for each

The

202 UdJe €1 U0 359NnB Aq $0G8.E/E /L L/Z/) | /oIoNE/|UlWoo/ w00 dno"olWapeo.)/:Sdjy WOy papeojumoq



Logical nets of NOR units

NOR unit the extra time taken was small. To deal with
functions of many more than 8 variables would probably
have necessitated also writing array (i) on disc.

After compilation the amount of time taken for exe-
cution of the program was quite short, not being more
than ten minutes for a net with 8 external inputs, and

Reference

very much shorter for nets with a lesser number of

external inputs.

Acknowledgement

The author would like to thank Mr. Brian Foster of

IBM for help in writing the program.

QUINE, W. V. (1955). ‘A way to simplify truth functions’, American Math. Monthly, Vol. 62, No. 9, pp. 627-31.

Book Review

Sequential Machines and Automata Theory, by TAYLOR L.
BootH, 1967; 592 pages. (New York, London, Sydney:
John Wiley and Sons Inc., 162s.)

According to the preface of this book it was written ‘to
provide a unified treatment of sequential machines and auto-
mata theory and their interrelationships’ and uses ‘an engin-
eering rather than a formal mathematical style of presentation’.

What is ‘engineering style’? Presumably it is a style of
writing in which one is not presented with highly formal
definitions and detailed rigorous proofs but a style which
concentrates on basic ideas and motivations, which gives
ideas of proofs which will stand up if one considers them
more deeply and which does not formalise for the sake of
formalisation. A superb book written in such a style and
covering much (but not all) of the material in Booth’s book
is ‘Computation, Finite and Infinite Machines’, by M. Minsky
(see review in this Journal, Vol. 10, p. 391). Unfortunately
many of the informal statements of Booth, whilst it is easy
for someone knowledgeable in the subject to see what he
intends to say, are rather vague and all too easily collapse if
examined closely. There should be more explanation of the
concepts involved and less of a rush into formalisations in
the ‘engineering approach’ of this book.

This is unfortunate as the book could have been very good
indeed. It has wide coverage (mathematical preliminaries;
finite state machines, their decomposition, minimalisation and
identification ; regular expressions; Turing machines; recursive
functions and computability problems; phrase structure
grammars; Markov processes and probabalistic machines).
It is well planned with informal introductions, more formal
definitions, relations to other systems and key properties,
summaries, good bibliographies and examples. It has illus-
trative diagrams, charts and tables. It is a well produced
book. Printing errors exist but are rare.

Some specific criticisms follow. The definitions of,
and relations between, computable, partially computable,

176

algorithm and program (p. 360) are vague. No mention is
made of why such an apparently restrictive definition of
‘computable’ is used, i.e. of Church’s Thesis. At the end of
p. 361 the following sections are motivated as ‘defining the
relationship between Turing machines and computable
functions’. As a computable function has been defined as
one which a Turing machine can compute this is a strange
motivation. On p. 407 it is stated that there is a strong con-
nection between finite state machines and finite state languages
because sentences of such languages are generated from left
to right; this is vague, which would not matter so much
except that attempts to make it precise could lead to incorrect
conclusions. Generally the ‘proofs’ that a certain machine
cannot perform a given task only consider one possible way
the machine might work; a remark should be added that it
can be proved that any way one thinks of will not work.
Regular expressions are motivated as ‘describing the
behaviour of’ sequential machines. How do they describe
behaviour? Moreover sequential machines are defined as
possibly having an infinite set of states whereas regular
expressions are related to finite state automata. In the
definition of semigroup on p. 32 the fact ceS should not be
a hypothesis and the equations ao(boc) = (aob)oc = achoc
are confusing without a comment that the last expression is
merely an abbreviation for either of the first two. An
example on p. 33 is described as ‘illustrating the usefulness’
of a certain procedure, but does no such thing. It is untrue
that A. M. Turing was ‘not interested in the design of
information-processing devices’ (p. 353).

These are all quibbles, but many such remarks could be
made about statements in the book. The book is a useful
one for a lecturer to possess, and to guide students in their
reading of it, but not a book to be read without such guidance
or without also referring to other books on the subject which

give a better feel for the subject.

D. C. CoorEer (Swansea)

202 UdJe €1 U0 359NnB Aq $0G8.E/E /L L/Z/) | /oIoNE/|UlWoo/ w00 dno"olWapeo.)/:Sdjy WOy papeojumoq



