
The construction of hierarchic and non-hierarchic classifications

By N. Jardine and R. Sibson*

Many of the cluster methods that are used in the construction of classificatory systems operate
on data in the form of a dissimilarity coefficient on a set of objects. In this paper we outline a
theoretical framework within which the properties of such methods may be discussed. Certain
conditions that a cluster method should satisfy are suggested, and a particular sequence of cluster
methods which satisfies these conditions is described. The application of the sequence of methods
is illustrated by a simple example.

(First received January 1968, and in revised form, February 1968)

Numerous methods for the derivation of classificatory
systems from data in the form of a dissimilarity coeffi-
cient on a set of objects have been proposed. Some of
these methods are described in: Sokal and Sneath (1963);
Williams and Dale (1965); Lance and Williams (1967a,
1967b). Despite the very considerable number of papers
describing and applying such methods, there have been
relatively few attempts to construct a mathematical
framework within which the properties of such methods
may be investigated. Exceptions are the papers of:
Bonner (1964); Watanabe (1965); Estabrook (1966);
Johnson (1967); Jardine, Jardine, and Sibson (1967);
and Jardine and Sibson (1968). Likewise, there have
been relatively few reports of comparative studies in
which a variety of methods were applied to the same
data. Exceptions are the papers of: Boyce (1964);
Minkoff (1965); Watson, Williams, and Lance (1966);
and Sokal and Michener (1967).

If progress is to be made in the understanding of these
potentially very useful methods it is important that
analytical and empirical investigation of the properties
of cluster methods should go hand in hand. Suppose,
for example, that we wish to investigate the stability of
the classification produced by a given cluster method as
we increase the quantity of information used in cal-
culating the dissimilarity coefficient on the set of objects
to be classified. Before we can interpret the changes
produced in the classification we must know whether
the transformation of the dissimilarity coefficient by the
cluster method is a continuous transformation. Similarly,
we may wish to be able to compare the goodness-of-fit
to given data of the classifications obtained using a
variety of cluster methods. In this case we need some
measure of the distortion imposed by a classification on
a dissimilarity coefficient, and we must set up the
analytical framework required to determine for each
cluster method whether it minimises the distortion under
certain conditions.

In Jardine, et al. (1967) and in Jardine and Sibson
(1968) a formal model was established within which the
mathematical properties of any cluster method operating
on a dissimilarity coefficient may be investigated. Criteria
of adequacy for a cluster method were suggested, and
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it was shown that the majority of the cluster methods
currently in use fail to satisfy these criteria. A particular
sequence of cluster methods which satisfy the criteria
was described. In the following sections an informal
account of the model is given, and a graph-theoretic
description is used to illustrate the sequence of cluster
methods and their application. First we consider cluster
methods that may be used in obtaining a hierarchic
classification, then we examine the more general problem
of characterising non-hierarchic classifications, and
describing cluster methods that may be used in their
construction.

1. Hierarchic classificatory systems
The derivation of a hierarchic classificatory system

from a dissimilarity coefficient is a two-stage process.
The first stage is the derivation of a dendrogram. A
dendrogram may be described informally as a hierarchy
with numerical levels. The levels at which each pair of
objects meet in a dendrogram, the splitting-levels, are
determined by the dissimilarity coefficient from which
the dendrogram is derived. The way in which the
splitting-levels are determined depends upon the cluster
method used. A hierarchic classification may be derived
from a dendrogram by identifying the ordinal levels
(ranks) of the hierarchy with numerical levels in the
dendrogram. We shall call the sets of objects which are
grouped at or below some numerical level in a dendro-
gram clusters. The sets of objects that are grouped at
some rank (ordinal level) in a classificatory system we
shall call classes. The classes of a given rank in a
hierarchy consist of just those objects that cluster at or
below the corresponding level in the dendrogram.
Various rules may be devised for identifying the ranks
of a hierarchy with the numerical levels in a dendrogram.
For example we might make the identification corre-
spond to some observed clumping of the splitting-levels
in the dendrogram. Alternatively we may, as was sug-
gested by Wirth, Estabrook, and Rogers (1966), use the
dendrogram, together with suitable measures of the iso-
lation and homogeneity of the clusters in the dendrogram,
as a guide to the construction of a hierarchic classi-
fication.
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Construction of classifications

It is the first stage, the passage from a dissimilarity
coefficient to a dendrogram, that constitutes what is
generally called cluster analysis (or a sorting-strategy).
A hierarchic dendrogram may be given a numerical
characterisation by indicating the splitting-level for each
pair of objects (see Fig. 1). In general a hierarchic
dendrogram may be characterised as a pair S = (P, d),
where P is a set and d is a function from pairs of elements
of P to the non-negative real numbers, satisfying the
conditions:

(1) d(a, b)^0 for all a,beP;
(2a) d(a,b) = 0 if a = b;
(2b) d(a, b) = 0 only if a = b;
(2c) there exist a, b e P such that d(a, b) =/= 0 if \P\ > 1 ;
(3) d(a, b) = d(b, a) for all a, b e P;
(4) d(a, c) ̂  max {d(a, b), d(b, c)} for all a, b, c e P.

In other words a hierarchic dendrogram is characterised
by an ultrametric. A similar characterisation is given
by Johnson (1967).

A dissimilarity coefficient will, in general, satisfy con-
ditions (1), (2a), (2c) and (3); it will not necessarily
satisfy condition (4) (the ultrametric inequality), or con-
dition (2b). It may satisfy some weaker condition
analogous to (4) such as the metric inequality:

(5) d(a, c) ^ d(a, b) + d(b, c) for all a, b, c e P.

A cluster method which transforms a dissimilarity
coefficient into a hierarchic dendrogram may therefore
be regarded as a method whereby the ultrametric in-
equality is 'imposed' on a dissimilarity coefficient. There
are certain simple conditions which we may reasonably
require any such transformation to satisfy.

(A) A unique result should be obtained from given
data; that is, the transformation should be well-defined.

(B) Small changes in the data should produce small
changes in the resultant dendrogram; that is, the trans-
formation should be continuous.

(C) If the dissimilarity coefficient is already ultra-
metric it should be unchanged by the transformation.

(D) In some sense the result obtained should impose
the minimum distortion upon the dissimilarity coeffi-
cient, subject to conditions (A)-(C) and (E)-(G).

A possible family of measures of the distortion imposed
by a hierarchic dendrogram is given by:

D*(d)) =

j , b) - D*(d)(a, (0

/, D*(d)) =

a, b) - D*(d)(a, b)\]/[m&x d(a, b)]

1)

where summation and maximisation are taken over all
pairs (a, b) e P X P; dis the dissimilarity coefficient; and
D*(d) is the ultrametric characterising the hierarchic
dendrogram obtained by some transformation of the
dissimilarity coefficient. Some of the A^ are familiar in
form: Ao (obtained in the limit as ju. -> 0) is a normalised

'maximum modulus'; A! is a normalised 'mean modulus';
and A1/2 is a normalised 'root mean square'. A similar
suggestion was made by Ward (1962).

(E) The operation of the transformation should com-
mute with multiplication of the dissimilarity coefficient
by any strictly positive scalar; that is,

D*(kd) = kD*(d)

for any k > 0. The effect of this is to ensure that the
transformation is independent of scale.

(F) The operation of the transformation should com-
mute with any permutation of P: that is,

D*d[(p X p)] = [D*(d)](p X p)

where p is any permutation of P. The effect of this is to
ensure that the transformation is independent of any
preliminary labelling of the objects to be classified.

(G) If a cluster is excised and the transformation is
applied to the restriction to it of the dissimilarity coeffi-
cient, the resultant dendrogram should be the restriction
to that cluster of the original dendrogram; that is, (in
view of condition (F)) if d has the form, as a matrix

d,

d2

\ d, J

where the minimum entry outside the square diagonal
blocks exceeds the maximum entry within them, then
D*(d) has the form

\D*(d2) j

\D*(d,) J

where this matrix satisfies the same condition. This
condition guarantees the consistency of the dendrograms
obtained when the set P is extended or restricted in
suitable ways.

It can be shown that the majority of the cluster
methods currently in use fail to satisfy these conditions.
For example, of the cluster methods described by Lance
and Williams (1967a) all but one fail to satisfy the con-
ditions; the complete-link (furthest-neighbour) method
originally proposed by Sorensen (1948) fails by being
ill-defined; the centroid method of Sokal and Michener
(1958), the median method, the group-average method,
and the flexible method suggested by Lance and Williams
(1966b), all fail by being discontinuous. The flexible
method may also fail to satisfy condition (C). Most
known methods satisfy conditions (E)-(G).
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Construction of classifications

The single-link (nearest-neighbour) method is the
only method that we have seen that satisfies conditions
(A)-(G). It can be given a simple graph-theoretic
description which makes clear its defects as a method of
classification (cf. Wirth et al., 1966). Any dissimilarity
coefficient on a set of objects can be characterised by a
set of graphs, one for each value taken by the dissimilarity
coefficient. The graph for a given value A of a dis-
similarity coefficient on a set of objects has as vertices
points representing the objects and edges joining just
those pairs of points representing pairs of objects with
dissimilarity <, h. The single-link method produces
clusters at each level that correspond to the components
of the graph for that value of the dissimilarity coefficient
(see Fig. 1). The defect of the single-link method is
that it clusters together at a relatively low level objects
linked by chains of intermediates. This defect is generally
called chaining, but to call chaining a defect of the single-
link method is rather misleading; the graph-theoretic
description makes it clear that chaining is simply a
description of what the method does.

The various average-link and centroid methods
attempt to avoid this 'defect' by picking out clusters
which are in some sense more homogeneous than those
obtained by the single-link method, but in doing so they
fall prey to the defect of discontinuity. In Jardine and
Sibson (1968) it is suggested that the defects of the single-
link method should be regarded as defects of hierarchic
classification itself. It is further suggested that the
best way to recover information of the kind that is
concealed by chaining, for example information about
the relative homogeneity of clusters, is to consider
cluster methods which lead to overlapping (non-
hierarchic) classificatory systems.

2. Non-hierarchic classificatory systems
The fact that there is a considerable body of consistent

usage for hierarchic classificatory systems facilitates the
construction of an appropriate logical model for such
systems, for the terms which must be defined and the
theorems which must be proved are known in advance.
The situation is not as simple for non-hierarchic classi-
ficatory systems, for in this case there is no well-
established consistent usage. Some of those who have
discussed methods leading to systems of overlapping
clusters are: Olson and Miller (1951); McQuitty (1956);
Parker-Rhodes and Needham (1960); Needham (1961,
1965, 1967); Jancey (1966); and Lance and Williams
(1967b). Intuitively we should expect that as the degree
of overlap is allowed to increase so the accuracy of repre-
sentation of the data should increase, although at the
cost of increased complexity. In the limiting case where
arbitrary overlap is allowed an exact representation of
the original data should be obtained. These intuitions
are precisely expressed in the generalised model covering
both hierarchic and non-hierarchic classificatory systems
given in Jardine and Sibson (1968).

A hierarchic classificatory system may be considered
as a nested sequence of partitions of a set of objects. In

Jardine and Sibson (1968) the notion of a partition is
generalised by defining a k-partition. A ^-partition
allows a maximum of k — 1 objects in the overlaps
between the classes that belong to it. A classificatory
system may therefore be considered as a nested sequence
of ^-partitions; the system will be hierarchic in case k = 1
and overlapping in case k > 1. By a corresponding
generalisation we may define the notion of a k-dendro-
gram. In a /^-dendrogram clusters at a given level may
overlap to the extent of k — 1 objects.

The single-link cluster method can be generalised and
it can be shown that each of the sequence of cluster
methods so defined satisfies conditions (A), (B), and
(D)-(F) given on p. 178, and suitable generalisations of
conditions (C) and (G). This sequence of methods we
denote by (Bk). The first member of the sequence, Bu
is the single-link method leading to a hierarchic dendro-
gram (1-dendrogram). The second member of the
sequence, B2, may be called the double-link method, and
leads to a dendrogram in which clusters may overlap to
the extent of one object (a 2-dendrogram), and so on.
If P is the set of objects, and |P| = p, where |P| is the
number of elements of P, then Bp_x gives an exact
representation of the dissimilarity coefficient. It can be
shown that the family of measures of distortion,
\(d, Bk(d)), is monotone decreasing with increasing k,
becoming zero in case k = p — 1. It can be shown also
that the use of this sequence of methods enables us to
recover information about the homogeneity of clusters
that the single-link method fails to reveal.

The sequence of cluster methods (Bk) can be given a
simple graph-theoretic description which generalises that
given for the single-link method (see above). The
clusters at level h in Bk{d), the &th member of the
sequence of ^-dendrograms, are obtained as follows. A
graph is drawn whose vertices represent the objects and
whose edges join just those pairs of points which repre-
sent objects with dissimilarity <> h. The maximal com-
plete subgraphs (maximal subsets of the set of vertices
in which all possible edges are present) are marked, and
wherever the vertex sets of two such subgraphs intersect
in at least k vertices further edges are drawn in to make
the union of the two vertex sets into a complete subgraph.
The process is repeated until there is no further altera-
tion. If this process is carried out for each of the values
taken by the dissimilarity coefficient the graph repre-
sentation of Bk(d) is obtained. This algorithm is not
suitable for computation, but is useful since it illustrates
the way in which the sequence of cluster methods (Bk)
operates on a dissimilarity coefficient. The application
of this algorithm is illustrated in Fig. 1. An algorithm
suitable for computation is given on p. 180.

The maximal complete subgraphs given by each value
of the dissimilarity coefficient can be regarded as the
'nuclei' of the clusters formed at each level in the sequence
of ^-dendrograms (Bk(d)). Several authors, notably
Bonner (1964) and Needham (1961), have suggested
that the recognition of maximal complete subgraphs
should be the first stage in a cluster method. The
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Fig. 1. The derivation of (Bk(d)), the sequence of ^-dendrograms, from a dissimilarity coefficient. A. The numerical
characterisation of a dissimilarity coefficient on five objects; B. A graph representation of the dissimilarity coefficient; C. A
graph representation of (Bk(d)); D. A numerical characterisation of (Bk{d)); E. 'Tree' diagrams representing (Bk(d)).

advantages of the particular sequence of methods
described here are as follows.

1. Calculation of the distortion imposed on the data
by successive members of the sequence (Bk(dJ) makes it
possible to decide how far it is useful to depart from a
hierarchic classification. In other words, the distortion
measures make it possible to choose a reasonable com-
promise between complexity and accuracy of repre-
sentation of the data.

2. Since each member of sequence of methods is a
continuous transformation it is possible to investigate
the stability of the classifications obtained when further
information about the objects is used in computing the

dissimilarity coefficient. If discontinuous cluster methods
are used such investigation poses great difficulties.

3. The application of the sequence of cluster methods (Bk)

For a set of objects P, with \P\ = p, a dissimilarity
coefficient can take a maximum of \p(p — 1) distinct
values. In cases where the number of distinct values
approaches this maximum it becomes unfeasible to carry
out the sequence of cluster methods (JBk) by hand, using
the graph-theoretic algorithm, for more than about
10 objects. The following terminating algorithm is
suitable for purposes of computing for up to about 25
objects.
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Construction of classifications

1. List the subsets of P with exactly k + 2 elements
in an arbitrary order.

2. Consider the value of d taken on each pair in the
first subset. If d takes a unique maximum value on a
single pair reduce this value to the next largest value
taken by d on any pair from the subset. Otherwise leave
dunchanged.

3. Repeat the process on the next subset starting with
the modified d. Continue until all the subsets have been
considered.

4. Repeat 2 and 3 until the list can be run through
without further modification of d. The resultant dis-
similarity coefficient is Bk(d). This algorithm, together
with the calculation of A1/2(^, Bk(dJ) for each member
of the sequence, has been programmed for use on the
Titan computer at the Cambridge University Mathe-
matical Laboratory by Miss A. A. Houston.

Two practical points should be noted in using this
algorithm. Firstly, the computation time increases
rapidly with p (approximately as pk+2 for k < pj2).
It is probable that a more economical algorithm could be
devised. Secondly, certain difficulties arise in cases
where condition (2b) on p. 178 is not satisfied by
the dissimilarity coefficient: i.e. d(a, b) = 0, but a = b.
Two options are available. One is to treat the objects
as distinct and to apply the algorithm directly. Alter-
natively single-link clustering at level h = 0 may be
applied to produce preliminary clusters. The dissimi-
larity between two such clusters is taken to be the
minimum value of the dissimilarities between pairs, one
member of the pair being from each cluster. The
algorithm is then applied with those clusters as objects,
and dissimilarities calculated as above. This process
corresponds to the preliminary identification of objects
not distinguished by the original dissimilarity coefficient.
In general the first process leads to smaller distortion
by the resultant ^-dendrograms; if the dissimilarity
coefficient satisfies the metric inequality (condition (5),
p. 178) the two options are equivalent.

The representation of the sequence of Ar-dendrograms
(Bk(d)) is itself a serious problem. The numerical
characterisations are not very informative, and do not
readily suggest useful classifications of the objects. The
'tree' representations, whilst useful for k <,2, become
increasingly difficult to draw and interpret for larger
values of k (see Fig. 1). The most useful way of pre-
senting the information seems to be to indicate the
clusters recognised at each level on graph diagrams (see
Figs. 1 and 2). The difficulty in this method of pre-
sentation lies in finding a two-dimensional arrangement
of points representing the objects which minimises the
tangling between edges in the graphs for each level. A
convenient way of obtaining such a representation is to
apply non-metric multidimensional scaling to the dis-
similarity coefficient (see Kruskal, 1964a, 1964b. The
two-dimensional arrangement obtained by non-metric
multidimensional scaling may then be modified to eli-
minate collinearity of points and to obtain a neater
arrangement for purposes of display. The arrangement

Table 1

A dissimilarity coefficient (Mahalanobis' generalised
distance) on nine populations of Sagina apetala

1

9-28 6-53 9
4-65 5

6

•73
•21
•01

1-79
10-21
7-55

11-20

6-41
7-30
2-98
7-73
4-62

6-98
3-66
2-63
8-37
6-90
3-68

1304
4-72
9-30
4-48

12-45
11-21
8-38

3-24
10 09
6-21

1015
4-68
3-80
7-13

12-75

1
2
3
4
5
6
7
8
9

Table 2

The numerical characterisation of the first four members
of the sequence of A-dendrograms, (Bk(d))

1 2 3 4 5 6 7 8 9

3-80

k = 1
Al/2(d, £,(

1 2

6-21

A = 2
A (tf, 5 (

1 2

7-30

A = 3

3-80
3-66

3

6-21
4-65

3

6-53
4-65

A1/2(rf, B3(d)) =

1 2

9-28

A = 4
A (t/, 5 (

3

6-53
4-65

d\) =

4-72
4-72
4-72

0-528

4

6-21
5-21
6 0 1

0-367

4

7-73
5-21
6 0 1

0-227

4

9-28
5-21
6 0 1

0146

1-79
3-80
3-80
4-72

1 -79
6-21
6-21
6-21

5

1-79
7-30
6-53
7-73

5

1-79
9-28
7-13
9-28

3-80
3-66
2-98
4-72
3-80

5

4-68
4-65
2-98
6 0 1
4-62

6

6-41
7-30
2-98
7-73
4-62

6

6-41
7-30
2-98
7-73
4-62

3-80
3-66
2-63
4-72
3-80
2-98

6

6 21
3-66
2-63
6 0 1
6-21
3-68

7

6-90
3-66
2-63
7-73
6-90
3-68

7

6-98
3-66
2-63
8-37
6-90
3-68

4-72
4-72
4-72
4-48
4-72
4-72
4-72

7

6-21
4-72
6 0 1
4-48
6-21
6 0 1
6 0 1

8

8-38
4-72
8-38
4-48
8-38
8-38
8-38

8

9-30
4-72
9-30
4-48
9-30
9-30
8-38

3-24
3-80
3-80
4-72
3-24
3-80
3-80
4-72

8

3-24
6-21
6-21
6-21
4-68
3-80
6-21
6-21

9

3-24
7-30
6-21
7-73
4-68
3-80
6-90
8-38

9

3-24
9-28
6-21
9-28
4-68
3-80
7 1 3
9-30

1
2
3
4
5
6
7
8
9

9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

181

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/177/378550 by guest on 19 April 2024



Construction of classifications

= 5-5O

3-7O

k = 1 k = 2 k = 3

Fig. 2. The graph representations of (Bk(d)) for k = 1, 2 and 3 at levels It = 3-70 and 5-50.

of points in Fig. 2 was produced by modification of the
two-dimensional arrangement obtained using a program
for non-metric multidimensional scaling written by
J. B. Kruskal.

In deciding on the level or levels at which clusters
obtained in a ^-dendrogram should be recognised as
classes in a classification of the set of objects, it is helpful
to devise measures of the relative isolation, and of the
relative internal cohesion (homogeneity) of the clusters.
One possible measure of isolation is given by (hi — h0),
where //, = min {d(a, b): a e P-S, b e S}, and h0 is the
lowest level at which the cluster S appears in the
^-dendrogram; this measure generalises a measure sug-
gested by Wirth et al. (1966). An appropriate measure
of the internal cohesion of a cluster in a ^-dendrogram
at level h is given by

[S+(d(a, b) - h)]/is(s - 1)

where s = \S\, d(a, b) is the value of the dissimilarity
coefficient on the pair of objects (a, b) from S, and S +
is summation over positive terms.

4. An illustrative example
In Table 1 a dissimilarity coefficient on nine popu-

lations of the plant Sagina apetala is shown. The
coefficient is the Generalised Distance computed from
the values taken by twenty parameters on thirty indi-
viduals in each population; pooled variances and co-
variances were used (see Mahalanobis, 1936; Rao, 1952).
The aim of the study was to find out if the data supports
the recognition of three geographical subspecies within
Sagina apetala.

In Table 2 the numerical characterisations of the
/c-dendrograms obtained are shown for k — 1 . . . 4.
In each case Kxj2{d, Bk(d)) is given. In Fig. 2 the
clusters obtained for /c = 1 . . . 3 at levels h = 3-70
and 5-50 are shown.

In the hierarchic dendrogram the distortion is very
high and the clusters obtained shown low homogeneity.
In B2(d) there is a marked drop in distortion and at
/i = 5-50 three clusters having relatively high homo-
geneity are obtained. Subsequent members of the
sequence reveal no useful clusters. The clusters obtained
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Construction of classifications

One obvious omission in our discussion of the sequence
of methods described is the absence of any tests for the
significance of the clusters obtained. A promising
approach to devising such tests is to compare the clusters
obtained by the sequence of cluster methods (Bk) on a
given dissimilarity coefficient, with those obtained by
application of (Bk) to dissimilarity coefficients generated
from some kind of random data.

We do not claim that the sequence of methods
described here constitutes any kind of unique solution
to the problems of cluster analysis. We do, however,
suggest that the construction of mathematical models of
the kind outlined here is essential if cluster methods are
to be used in scientific investigations; for very little can
be done to establish the empirical structure of data until
the mathematical properties of the methods of analysis
used are known.
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in B2(d) at h = 5 • 50 assign the populations correctly to
the subspecies recognised on independent grounds in
Clapham and Jardine (1964). Populations 2 and 6
which occur in the overlaps between the clusters are
intermediates which occur where the geographical ranges
of two of the subspecies overlap with that of the third.
In this case, at least, the use of the sequence of cluster
methods (Bk) is vindicated.

5. Conclusions
The theoretical model outlined in this paper is one in

which classification is regarded as a two-stage process.
The first stage is the derivation of a dissimilarity coeffi-
cient. The second stage is the transformation of a dis-
similarity coefficient into a classificatory system, and it
is this stage that we have considered in detail. The
derivation of dissimilarity coefficients from discrete-state
(attribute) data, quantitative data, and mixed data is the
subject of a forthcoming paper by Jardine and Sibson.
An apparently very different kind of theoretical model
was constructed by Watanabs (1965); his information-
theoretic model covers a variety of methods that go
directly from attribute data to a hierarchic classificatory
system (for example the methods of Alexander and
Mannheim, 1962; Alexander, 1963; Macnaughton-
Smith, Williams, Dale, and Mockett, 1964; Lance and
Williams, 1966a). The relation between such methods
and methods of the kind that are covered by our model
needs further investigation.
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Book Review

Process Control Systems, by F. G. SHINSKEY, 1967; 367 pages.
(McGraw-Hill Book Company, £5 12s.)

The gap between theory and practice in Process Control con-
tinues to grow. Although elegant techniques exist for the
solution of many control problems the pay-off, in terms of
industrial applications, so far reflects scant reward for the
time and effort which have been spent to date on the appli-
cation of modern control theory in the process industries.
Although it has been suggested that the mathematics of
modern control theory is a hindrance to its use by practising
engineers I believe that very often the theories themselves do
not meet the needs of real process control problems. Before
much headway can be made towards the analytical design of
more advanced process control systems a far greater under-
standing is required, among the control theorists, of the
nature of physical and chemical processes, their dynamics
and the real problems associated with the running and
control of these processes.

A new look at process control is needed which combines
that which is worth saving from the largely empirical control
techniques which are currently employed in the industry
with the advantages of a methodical approach to analysis
and design which are claimed for modern control theory.

This book by Shinskey obviously sets out to provide such

an approach. In particular it contains much useful classi-
fication of process characteristics and of the systems which
are known to give satisfactory control characteristics. In
this respect the book is admirable. However, the way in
which control system design is approached is too sketchy
and relies too much on the acceptance of results which have
been obtained by others either for different plants or from
mathematical generalisations of the problems. I believe the
dangers of this kind of approach are severe, that each system
must be treated on its merits and, therefore, that this text-
book would be better if greater attention were paid to the
methods by which results may be derived.

The book is to be completely recommended to control
theorists as offering some insight into the nature of practical
control problems. As a guide for process engineers into the
methods of control system design it is less good but is still a
vast improvement on most texts of its kind.

Difficult aspects of control such as nonlinearity, interaction,
adaptation, optimisation are mentioned but only briefly and,
while not providing all the tools necessary to deal with
these problems, the author does at least survey the
inherent advantages and disadvantages of particular control
schemes.

J. M. NIGHTINGALE (Southampton)
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