
Hybrid computation of the dynamics of a distributed system

By L. G. Noronha, C. Y. Po, and J. W. Womack*

The hybrid computer solution of the partial differential equations representing transient behaviour
in a boiling channel is described. The computation was performed on a general purpose hybrid
machine, the EAI HYDAC 2000, which comprises an analogue computer together with a system
of programmable logic building blocks, analogue/digital converters, digital memory, etc. Details
of the method of computation and its hardware implementation are given. Results and accuracies
are discussed.

{First received October 1966 and in revised form March 1968)

1. Introduction
Hybrid computation employs techniques which combine
the advantages of both digital and analogue computa-
tion. Digital computation employs only a serial technique,
in contrast to analogue computation which is an exclu-
sively parallel method. The solution of systems of partial
differential equations by analogue means uses a great
quantity of equipment in duplicating similar cells. A
direct digital approach shows that some such problems
are intractable from the numerical analysis viewpoint.

The mixture of serial, and parallel techniques achieved
in a hybrid computer has the advantage that at least one
independent variable is treated as continuous.

2. The system and its describing equations
The system under study is a Once-Through boiler

used for raising steam in a nuclear power reactor. In
such a boiler water near its boiling point is pumped into
the bottom of a heated channel, and vaporised during
its passage through the channel. The ultimate objective
of the study was the design of the boiler control system
by direct simulation. However, this paper is concerned
only with simulation of the dynamics of the boiling
channel.

Referring to Fig. 1 we see that water is pumped into
the channel at velocity uw with enthalpy ht and then
passes through the riser into the steam drum which is at
a pressure Pd. The heat input distribution from the
reactor core is assumed to be sinusoidal. The simulation
is required to represent the channel's response to time
variations in the total heat input, Q, the drum pressure,
the inlet water enthalpy and the inlet water velocity.

The describing equations are those of conservation of
mass, energy and momentum, that is
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where D = pw{\ —/) + psf, mass density of the
mixture.

E = pjtj\ - / ) + p/ij, enthalpy density
of the mixture.

H= pjiwuw{\ - / ) + Pshstisf, enthalpy flow-
rate of the mixture,

M — pwiiw(l —/) + psuj, mass flowrate of
the mixture.

(4)

energy of flow and pressure energy.

The water and steam enthalpies and densities, hw, hs,
pw, ps are functions of local pressure only. The velocities
uw, us, the volumetric void fraction, / , and the local
pressure, P, are all functions of axial position and time.
The friction pressure drop is given by

dP Kw2,,
F=-j- =—(l+ax)

uz friction Pw
(5)

* Electronic Associates, S.A. de C.V., Darwin 142, Planta Baja, Mexico 5, D.F.
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Hybrid computation

where a = 36,800/P (P is here expressed in psia units).
The heat input, q, appearing in (2) is a function of z and
is given by

&) = 9max COS ( ^ - <x), 0 < Z < /). (6)

The total heat input to the system, Q, is specified, and
from this we find qmax according to

Hmax

H\ sin l-= — a) + sin a
(7)

This set of equations is non-linear and non-trivial.
Their direct solution by the usual analogue parallel
technique is not possible because of equipment limita-
tions. A completely digital solution is also a formidable
task, and does not possess the speed of man/machine
interaction of system simulation.

3. Method of solution of P. D. E.'s
In order to solve a set of partial differential equations

on an analogue computer, it is always necessary to
employ some technique of finite differencing. This
reduces the problem to a numerically larger set of
ordinary differential equations, which can be programmed
for parallel solution on the analogue computer.

If the derivatives with respect to distance are differ-
enced

then,

becomes
dP" _ -<
It' = ~ Az

(8)

(9)

n = 0, 1 , . . . N.
z — n. Az.

These equations are solved for all t > 0 at stations
n = 0, 1,. . . N simultaneously. With a complex prob-
lem, such as the present one, the equipment requirements
of this technique become excessive. The equipment
required is proportional to N, the number of cells
involved. A simulator using a small number of cells
responds badly when the forcing functions contain high
frequency components (e.g. step inputs).

A hybrid computer adds memory capacity and logic
to the analogue computer. Further, the operating mode
of all integrators can be programmed with much im-
proved flexibility. These factors allow function storage
and repetitive operation of the analogue console to be
combined, and prompt a serial solution method to the
partial differential equation problem resulting in a
sharp reduction in the complement of analogue equip-
ment required. For a transport-type problem like the
present one, it is possible to consider finite differencing
in either space or time.

Space differencing

If the difference equations are written as in (9), in the
serial solution method an analogue circuit for one cell
only is used: in turn it simulates the system behaviour
at z,, z2, z3 etc. Consider the nth stage: <f>"-1(t) is fed
from the computer memory to the P"(t) integrator. The
analogue circuitry produces <f>"(t) which feeds back to
the P"{t) integrator, and also passes to the computer
memory (replacing fr'1). At / = T (the duration of
one operating period), the computer resets itself and
prepares to compute P"+l(t) during the next operating
period. The number of space points considered simply
alter the problem running time, and have no influence
on the equipment complement.

However, there are drawbacks to this scheme. First,
the time period for which the simulation runs is limited
by the length of the time history stored. Secondly, it is
not possible to simulate a control loop round the distri-
buted parameter part of the system, because the entire
"input" time behaviour, <f>(z0, t), must be specified at
the beginning of the solution. Third, this particular
problem is a two-point boundary value problem, with
two initial conditions specified at the bottom of the
channel and the third at the top of the riser. The third
initial condition must be guessed at the bottom of the
channel, and then the whole problem solved to see if
the guess meets the prescribed boundary condition.
Such an iterative process using space differencing will be
very slow. The fourth and final difficulty for this problem
is that the steady state spatial distribution is also required
in order to give the initial conditions at z = zn, and t = 0.

The first two difficulties apply to any problem and
limit the usefulness of space-differencing serial solutions,
while the last two arise because of the boundary con-
ditions of the present problem.

Time differencing

If time only is considered at discrete values, t = n.At,
the usual backward differencing scheme applied to (8)
will give:

d<f>"
~Tz '

pn pn — 1

Al • (10)

For the solution of this equation, the computer memory
is loaded with P"~1(z); this is then fed into an integrator
which produces <f>"(z). From this, by algebra, P"(z) is
computed and fed back to the integrator. It also passes
back to the memory, up-dating it prior to generation of
<£"+' during the next computing period.

The analogue equipment required is basically that
needed for solution of the original steady state equations.
This complement is approximately the same as is required
for one cell of a conventional (parallel) simulation. The
computer operates repetitively and at each cycle produces
the complete spatial distribution at a known instant in
time.

In contrast to the spatial differencing scheme, the time
for which the process is simulated is not limited. Also,
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Hybrid computation

it is possible to simulate the complete physical system,
including its associated controllers. The two-point
boundary conditions can be met by an iterative tech-
nique: a first guess at the unknown initial condition is
made, and its value is modified iteratively by the error
between the final value of the variable and the given
boundary condition until the latter two are the same.
The computer is mechanised to include this iteration
before up-dating the memory and proceeding to the
next time-step. The time differencing schemes, there-
fore, always produces a valid solution up to the {n — l)th
time step while it works on the nth step. This is in con-
trast to the space differencing scheme whose results are
not known to be valid until the solution is completed
and the final-point boundary condition has been met.

The advantages of a time-differencing, serial solution
are seen to be very substantial. It is this technique
which has been used to solve the Once-Through boiler
problem.

Computer equations
Reconsidering equation (10) we turn to consider a

general partial differential equation in two independent
variables, time and space, where differences are to be
taken in time. That is:

(11)

where u is a vector and F is a matrix whose elements are

polynomials in p = .r—. (Higher time derivatives can

be taken care of by defining new components of u.)
By the mean value theorem

«(X, t + At) — U{X, t) = At. zr-
x,t + \j..Al

= At.F(p).u(x, t +
(0 < ix. < 1).

(12)

The objective is to replace the continuous variable / of
(11) by t = n.At where n = 0, 1, . . . N. In order
to achieve this make the approximation that
F(p).u(x, t + /x. At) can be replaced by a mean value
over the interval from t, to t + At, that is:

(13)

F(j>).u{x,t + j

= F(p).[9.u(x, t + At) + (1-0).u(x, /)]
(o < e < i).

If we write u(x, t = n.At) = u", then (13) substituted
in (12) and applied to (11) gives the difference scheme:

un+\ _ un

Al = F(p){9w+l +(1 - 9)w)

(0 < 9 < 1).

(14)

The parameter 9 determines whether forward or back-
ward differences are being used, and has important
effects on both stability and accuracy (see Mitchell, 1963).

C O M P U T E R

M E M 0 R Y

Fig. 2

In fact, (14) shows that if 0 = 1 we solve the equation
for spatial derivatives at the (« + l)th time step, so that
the time difference extends only backwards from the
RHS of the equation. This is the usual backward
difference scheme. 6 = -J- corresponds to a central
difference scheme and 9 = 0 to a forward difference
approximation which is always unstable. Mitchell
(1963) shows that for any system of equations minimum
error results if we choose 9 = \; unfortunately this also
appears to be the condition for marginal stability.

The solution of (14) is mechanised in the following
manner. Rewriting the equation gives

u"+i-9.At.F(p).u"+l = W + (l-9).At.F(p).u''. (15)

It is arranged that the computer stores MJ(JC) during the
nth time step, where

- 9).At.F(p).W. (16)

At the (n + l)th time step we solve (15) which is now
written as

= < (17)W+1 — 9.A

and mechanised on the analogue computer as

= -J_ _L
~~ e.At'fJpj

(18)

From (16) it appears that the new function to be
stored is

(19)M»+» + (l - 9).At.F(p).un+l

Eliminating F(p).un+1 by the use of (17) gives

(20)

(18) and (20) are mechanised on the computer, leading
to the block diagram of Fig. 2.

At the instant when the computer is switched on,
regard n as equal to zero. Since the memory is empty,
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Hybrid computation

(16) was not satisfied in obtaining the value of u% used
in the analogue solution for w', and thus ul is also
incorrect. However, it is not meaningless. The operating
procedure is to turn on the computer and leave it to
determine the steady state spatial distribution of the
system. Thus «i is used to compute w2, and so on; the
series of curves u°, « ' , . . . W describe an artificial
transient response from zero 'initial conditions'. If the
system of equations is stable, the steady state will finally
be reached. When this is so W = un+1, by definition,
and also wj = wj+ 1 so that (16) has been satisfied by
iteration. Clearly once (16) has been satisfied only (18)
and (20) need be mechanised to compute any future
transient responses.

The period of time needed for the initial settling down
is much reduced if the digital memory is loaded with the
steady state spatial results before 'closing the loop' by
throwing the three 'a' switches in Fig. 2.

4. Details of analogue program
Rewriting (1), (2), and (3) in the format of (18) we

find that

(21)

( 2 2 )

(23)

where the three functions to be stored, following (20),
are

S?J' = -,D"+' + (d-^A )S'L (24)
e

l*

$•?+' = -nE"+1

cn+1 M"+1

(25)

(26)

The analogue problem has now been reduced to the
solution of three simultaneous, non-linear, first order
differential equations with distance as the independent
variable. Integration is performed in the direction of
fluid flow. Since the pressure at the base of the riser is
unknown, iteration is needed to determine this initial
condition. A very simple iteration scheme using a
Track/Store pair as feedback proved adequate.

If kinetic energy is neglected there is a major simpli-
fication in the algebraic relationships used to calculate
D, E and M from M, H, and Kp before implementing
(24), (25), and (26). Discussion showed that the results
would not be very much affected, so the simplification
was made.

Therefore,

By using us = yuw the void fraction, / , can be eli-
minated from H and M in (4), giving:

uw = - Hf2(Pr)
and/is given by

M
- H/4(Pr)

(28)

(29)

where

(30)

PsPwY(hs — A J

= PsY — P».

PsPwY^hs — hw)

= (PsY - Pw)A(Pr)

= (PsY ~ Pw)MPr)

= Pw

(PsY — Pw)
Evaluation of these five functions showed that they
could all be approximated by the form / = a + bPr to
an accuracy better than 1 % over the pressure range from
800 to 1000 psia. The numerical functions obtained
are:

0-0558 - M.10-8Pr

- 8-166.10-4 + 9-12.10-uPr

-2-52+5-00.10-7Pr

3-904.10-2-4-78.10-9Pr

- 0-97 - 2 - 4 5 . 1 0 - 8 P r . *

(31)

The inlet water is below the saturation enthalpy of
water at the pressure at the bottom of the channel.
Because of this, boiling does not occur at once, and the
equations involved are those for one phase flow. Below
the boiling point, / is zero by definition, and also hw is
not determined by local pressure. However, the basic
partial differential equations are still valid. M and H
are now given by

or

M = pwuw

M

Pw

H

UNSA T

'wUNSAT —

(32)

(33)

(27)

Below the boiling boundary, (33) applies. Above this
point, (28) and (29) must be used. Boiling occurs when

J-F

irf>ftw since at any pressure hw is the greatest specific

enthalpy possible in the liquid phase. The analogue
* N.B. (1) Pr expressed in poundals/ft2, as the whole problem

is solved in lb m-ft.sec units.
(2) hw, h, are expressed in Btu/lb, but 500 is subtracted from the

steam table values throughout, i.e. we are using a different base
from which to measure enthalpy.
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program shown in Fig. 4 is obtained by applying con-
ventional programming techniques to equations (4),
(21) to (29) and (31) to (33). Note that the analogue
equipment requirements for this problem are quite
modest. This is a direct result of the serial solution
technique employed.

5. Digital program
The basic requirements of the digital program are to

carry out function storage, function playback and the
control of problem integrators. The physical problem
requires the program to store and playback three func-
tions. Three 256-word serial memories are used for
this, storing one function in each memory and giving
256 sample points from each function. In order that
sampling could be done at fixed, equally spaced co-
ordinates, one whole memory cycle time (1 -952 msec) is
assigned to the write-in and read-out from the memory
and another cycle time to the AD and DA conversions,
resulting in a problem solution time of 1 -000 sec. The
AD and DA conversions are done serially using one AD
and DA converter. With an AD conversion time of
250 /xsec and a DA conversion time of 100 fisec, the
1 • 952 msec allowed for conversion permits the program
to be capable of simultaneously storing and playing back
seven functions with addition of memories. The time
sharing of one DAC and ADC necessitates the use of
memory buffers, for temporarily holding digital points
and track/store amplifiers for holding analogue voltages.
Fig. 3 shows a block diagram of the digital program.

The functions to be AD converted are available at the
output of the sampling track/stores. Serial conversion
of the three functions then follows, storing them tem-
porarily in the memory buffers, and when the last
function has been converted, contents of the memory
buffers are transferred in parallel to the correct word
positions in the memories. The word position in each
memory is indicated by the presence of a flag, flag 2 for
write-in and flag 3 for read out. During playback, the
functions are read out in parallel from the memory to
the buffers. Serial DA conversion follows. The con-
verted analogue voltages are stored at the output of the
interpolation track/stores (Fig. 4). The control block
supplies timing pulses for co-ordinating the various
operations. Details of these timing pulses are shown in
Fig. 5. For obvious reasons, only eight pulses are shown
instead of the full 256. All streams of pulses are
primarily derived from the memory pulse SM8, which
occurs on the T, time once for every memory cycle
time. All these streams of pulses have a pulse spacing
of two memory cycle times, and are of 0 • 5 /K.sec width,
except where indicated.

The digital program comprises of two sub-programs:

(1) Control Pulse Generation Program.
(2) Function Storage and Playback Program.

Control pulse generation program
Fig. 6 shows in detail the digital program for the

generation of mode and track/store control pulses. The
program is implemented by patching on a pre-patch
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Fig. 5. Control pulses

panel the parallel logic and memory elements available
on the HYDAC 2000 hybrid computer, in accordance
with the schematic of Fig. 6. The program generates
the following control pulse streams needed for the timing,
synchronisation and control of the hybrid simulation:

pi—Analog-to-digital conversion pulse stream.
p2—Serial-memory WRITE pulse stream.
p3—Sampling track/store signal.
p4—Interpolation output control signal.
p5—Serial-memory READ pulse stream.
p6—Digital-to-analogue conversion pulse stream.
p7—Control pulses for segment slope track/stores.

p8;p9,pl0—Interpolation input control signals.
pi 1—Problem integrator mode control signal.

Track/store control signal for plotting.
Four-bit counter for iteration control.

The above control pulse streams are shown in their
correct interrelationship with each other in Fig. 5.

Function storage and playback program
This is the main digital program which enables the

continuous analogue function variables generated by the
analogue computer to be sampled, the samples converted
into their binary equivalent, stored in the serial memories,
reconverted back into analogue signals and interpolation
carried out automatically. Hence, the program is
observed to contain three essential parts:

1—AD conversion the control pulses pi arranges for the
multiplexer to step through the 3
analogue channels sequentially, ini-
tiate A to D conversion of each
channel sample using one AD con-
verter, and loading the memory
buffers with this information.

2—Memory write the pulses p2 control the transfer of
and read data from the memory buffers into

the serial memory units for storage.
The pulses p5 then control the
reading out of memory, into another
set of memory buffers.

3—DA conversion the pulses p6 initiates the DA con-
version program loop which repeats
until all 3 functions are converted
and loaded on to their respective
interpolator input track/stores.

6. Results and discussion
The simulation was used to compute step responses

of the Once-Through Boiler to changes in:

— Total Power Input Level
— Drum Pressure
— Feed Enthalpy
— Feed Mass Flowrate.

An eight-channel strip chart recorder was used to
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Fig. 6. Pulse generation and mode control program

record the values of Uw, Kp, H, f, x, D, q and E for the
last analogue run at each time-step. (That is, no record
of the iteration runs was made.) The position of the
boiling boundary was automatically printed at each
time-step. Also, an analogue circuit was devised to
give an X-Y plot of the time behaviour of any one
function at any chosen position along the channel.
During most of the runs this circuit was used to plot the
deviation of mixture density D(z = 12, t) from its steady
state value. Mixture density leaving the reactor core is
of interest because of the effect on nuclear reactivity of
a changing amount of moderating coolant in the core.
Fig. 7 is condensed from a strip chart recording of a
power transient.

During the course of these experiments the values of
6 and At were varied within the range giving stable
computation. Values of 0-52, 0-75 and 1 0 were used
for 6, and also time steps of 1/10 sec and 1/15 sec.

A single run was made to test the system's frequency
response characteristics. A one cycle/sec sine wave of
amplitude equal to 10% of the d.c. total power level

was imposed on the system, and the effect on density
at the top of the boiling channel was recorded.

Figs. 8 to 12 illustrate some of the results obtained and
plotted for different variables and different time-steps.

Previous studies on the dynamics of this particular
boiler have produced (i) a set of linearized transfer
functions and (ii) a linearized and simplified model
which has been solved by the parallel finite differencing
scheme on an analogue computer (see Denmead 1964).
Comparison between the present results and those of
earlier work has been made for all the step responses.
In all cases the simplified analogue model agreed more
closely with the present work than did the transfer
function model.

Accuracy
Two sources of error are present in finite difference

approximations to partial differential equations. The
first is truncation error which is related to the time step,
At, and the parameter, 6, associated with the difference
scheme. The other is the round-off error which is
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Fig. 7

related to the linear interpolation approximation and
AD and DA conversion inaccuracies.

Referring to Fig. 2, the round-off error is amplified
through integration l/F(p). Hence, it is also dependent
on At and 6. The smaller is the product A;. 6 the
larger the gain of the problem integrators; hence causing
an amplified round-off error.

The magnitude of the round-off error was found to be
1 % on average and of this the inaccuracy of the AD con-
version process contributed 0 • 25 % overall. The round-
off error was found to vary, according to function
magnitude and frequency.

The whole problem of obtaining a steady solution,
whether transient or steady state, is to employ a time-
step large enough that the integrated round-off error
does not inject an error distribution which upsets the
stability of the system. This is because the boundary
iteration loop is sensitive to the integrated round-off
error present.

Fig. 8. Response to step change of power level (50%-100%
andl00%-50%)

C H A N G E I N M I X T U R E D E N S I T Y A T T O P O F C H A N N E L

L B / F T 0

+ 2 - 1

1 .9 S E C O N D S

Fig. 9. Response to step change of drum pressure
(940 p.s.i.-980 p.s.i.)

Truncation error

In transient solution both round-off and truncation
errors enter into play. It is, therefore, difficult to isolate
the effects of truncation errors. A direct comparison
of curves duplicating the same transient but using
different time steps does not isolate truncation errors,
since round-off errors are also amplified.

However, it is clear that shorter time steps will reduce
truncation errors. It is known theoretically that as
6 -> \ truncation errors are reduced; the present experi-
ments directly proved the other half of this statement—
as 6 varies from 1 -*- \ system stability is reduced. Most
experiments used 6 = 3/4 as a compromise value.
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10. Response to step change of drum pressure
(940 p.s.i.-980 p.s.i.)

Complete sets of step responses have been recorded
for Ar = 1/10 sees and 1/15 sec. These results are
presented in Figs. 8-12, and from them some idea of the
magnitude of the truncation error can be deduced.

Conclusion
In conclusion, the serial solution of complex sets of

two-dimensional partial differential equations is per-
formed on a hybrid system, the EAI HYDAC 2000.
The solution obtained is a simulation, having the usual
benefits of analogue computation. This type of problem,
if not simplified, uses a prohibitive amount of equipment
on an analogue computer. Such problems are also
expensive and slow to solve on modern digital computers
(and this usually loses the benefits of analogue simu-
lation). The present speed of simulation can be increased
substantially so as to achieve a faster solution time.
If this is done, strip chart recorders will cease to be useful,
and alternative output equipment such as cathode-ray
tube display screens must be considered. Propagation
of round-off errors is the limiting factor in the accuracy
attainable. The finite-differencing scheme used has
definitely been found satisfactory, as round-off errors
are found to dominate any truncation errors. The
accuracy obtained from the simulation is good enough
that a feeling for the system dynamics can be obtained
from experiments on the model. The simulation can be
extended to include a control scheme (which must be
approximated as a sampled data control system, since

C H A N C E I N M I X T U R E D E N S I T Y A T T O P O F C H A N N E L

1.5 S E C O N D S

Fig. 11. Response to step change of feed enthalpy
(-10BTU/LB)

CHANGE IN M I X T U R E D E N S I T Y AT T O P OF C H A N N E L

1.5 S E C O N D S

Fig. 12. Response to step change of feed flowrate

the process only produces data at discrete times). Thus
the hybrid computing system still possesses the analogue
computer's advantage of a close man/machine loop
during the performance or experiments. It provides an
animated and visual simulation of system dynamics
involving partial differential equations.
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