A modification to Paulson's approximation to the variance ratio distribution

By T. Ashby*

Abstract

Paulson's approximation to the variance ratio distribution is poor or useless for less than five degrees of freedom in the denominator. However, it can be modified in this range to give results correct to three significant figures.

(First received November 1967)

Tables of percentage points of the variance ratio distribution F are readily available (e.g. Fisher and Yates, 1963), but are not convenient to use with a digital computer. On the other hand it is not practical to calculate regressions or analyses of variance involving many variables without using a computer, and significance testing is naturally required in such programs. Consequently some way of calculating values of F is required, and an approximation is generally used.

Kendall and Stuart (1958 edition) discuss three such approximations. The third of these is due to Paulson (1942) whose reasoning is first that F can be written as the ratio of two chi-squared variates divided by their degrees of freedom. Secondly, Wilson and Hilferty (1931) have shown that $\left(X^{2} / n\right)^{1 / 3}$ is nearly normally distributed, with mean $1-2 / 9 n$ and variance $2 / 9 n$. Thirdly, Fieller (1932) has shown that if x and y are normally distributed with means μ_{x} and μ_{y} and standard deviations σ_{x} and σ_{y} then a function

$$
R=\frac{\frac{y}{x} \mu_{x}-\mu_{y}}{\left(\left(\frac{y}{x}\right)^{2} \sigma_{x}^{2}+\sigma_{y}^{2}\right)^{1 / 2}}
$$

is approximately normally distributed with zero mean and unit variance. Replacing y / x in this last expression by $F^{1 / 3}$ we obtain

$$
U=\frac{\left(1-2 / 9 n_{2}\right) F^{1 / 3}-\left(1-2 / 9 n_{1}\right)}{\left(2 F^{2 / 3} / 9 n_{2}+2 / 9 n_{1}\right)^{1 / 2}}
$$

where F is the variance ratio and n_{1} and n_{2} are the degrees of freedom in the numerator and the denominator. This function is approximately normally distributed with zero mean and unit variance.

This approximation can of course be rearranged to give approximations to the percentage points of F in terms of normal deviates U and n_{1} and n_{2}. We shall call this approximation P. If we write f_{1} for $2 / 9 n_{1}$ and f_{2} for $2 / 9 n_{2}$ and solve Paulson's equation as a quadratic in $P^{1 / 3}$ we obtain

$$
\begin{aligned}
& P^{1 / 3}= \\
& \frac{\left(1-f_{1}\right)\left(1-f_{2}\right) \pm\left[u^{2}\left(f_{1}+f_{2}+f_{1} f_{2}\left(f_{1}+f_{2}-u^{2}-4\right)\right)\right]^{1 / 2}}{\left(1-f_{2}\right)^{2}-u^{2} f_{2}}
\end{aligned}
$$

Computer programs store the important values of normal deviates u, and from these calculate P. The approximation is good for values of n_{2} above 10 but for smaller values is poorer, and for n_{2} up to 3 produces useless and even negative results, as can be seen by comparing Tables 1 and 2.

This difficulty can be overcome, however, by applying a linear transformation $G=m P+c$, where m and c are constants depending on the significance level and on n_{2}, the degrees of freedom of the denominator. Suitable values are stored in the computer and P is adjusted whenever n_{2} is below a critical value. This modified approximation gives results which are generally correct to three significant figures, as can be seen by comparing Tables 1 and 3.

Table 1
Variance ratio distribution, F
(Fisher \& Yates)

${ }_{1}{ }_{1}^{n_{1}}$	95\%			99\%			99.9\%		
	2	6	24	2	6	24	2	6	24
	199.5	$234 \cdot 0$	$249 \cdot 0$	4999	5859	6234	5000*	5859*	6235*
2	$19 \cdot 00$	$19 \cdot 33$	19.45	99.00	$99 \cdot 33$	$99 \cdot 46$	$999 \cdot 0$	$999 \cdot 3$	999.5
3	$9 \cdot 55$	$8 \cdot 94$	$8 \cdot 64$	$30 \cdot 82$	$27 \cdot 91$	$26 \cdot 60$	$148 \cdot 5$	$132 \cdot 8$	$125 \cdot 9$
4	$6 \cdot 94$	$6 \cdot 16$	$5 \cdot 77$	$18 \cdot 00$	$15 \cdot 21$	13.93	$61 \cdot 25$	$50 \cdot 53$	$45 \cdot 77$
5	$5 \cdot 79$	$4 \cdot 95$	$4 \cdot 53$	$13 \cdot 27$	$10 \cdot 67$	$9 \cdot 47$	$37 \cdot 12$	$28 \cdot 84$	$25 \cdot 14$
10	$4 \cdot 10$	$3 \cdot 22$	$2 \cdot 74$	$7 \cdot 56$	$5 \cdot 39$	$4 \cdot 33$	$14 \cdot 91$	$9 \cdot 92$	$7 \cdot 64$

* Multiply these values by 100 .

[^0]P approximates F well above $n_{2}=10$ and is quite good for n_{2} down to 5 . A program testing significance at the $5 \%, 1 \%$ and 0.1% levels and using the modification for n_{2} up to 5 needs to store 30 extra numbers.

Table 4 gives values of m and c for n_{2} up to 10 , derived empirically. The modified approximation has been programmed in Autocode for the Elliott 803 and in NELIAC for the Univac 490.

Table 2
Paulson's approximation, P

n_{1}	95%				99%			$99 \cdot 9 \%$		
n_{2}										
1	2	6	24	2	6	24	2	6	24	
2	$23 \cdot 92$	6706^{*}	7300^{*}	$-14 \cdot 58$	$-24 \cdot 96$	$-29 \cdot 33$	$-0 \cdot 246$	$-2 \cdot 108$	$-2 \cdot 913$	
3	$10 \cdot 09$	$9 \cdot 54$	$25 \cdot 20$	$560 \cdot 20$	$640 \cdot 3$	$673 \cdot 3$	$-181 \cdot 0$	$-292 \cdot 5$	$-339 \cdot 3$	
4	$7 \cdot 08$	$6 \cdot 33$	$5 \cdot 94$	$42 \cdot 42$	$40 \cdot 86$	$40 \cdot 11$	1381	1544	1612	
5	$5 \cdot 83$	$5 \cdot 02$	$4 \cdot 60$	$13 \cdot 17$	$17 \cdot 66$	$16 \cdot 50$	$110 \cdot 7$	$103 \cdot 4$	$100 \cdot 2$	
10	$4 \cdot 08$	$3 \cdot 22$	$2 \cdot 74$	$7 \cdot 58$	$11 \cdot 51$	$10 \cdot 36$	$47 \cdot 79$	$40 \cdot 11$	$36 \cdot 76$	
						$4 \cdot 39$	$15 \cdot 32$	$10 \cdot 32$	$8 \cdot 074$	

* Multiply these values by 10,000 .

Table 3
Modified approximation

n_{1}		95%	99%				$99 \cdot 9 \%$		
n_{2}									
1	2	6	24	2	6	24	2	6	24
2	$198 \cdot 5$	$234 \cdot 2$	$249 \cdot 1$	4988	5863	6232	4990^{*}	$5859 *$	$6235 *$
3	$9 \cdot 00$	$19 \cdot 33$	$19 \cdot 44$	$99 \cdot 01$	$99 \cdot 34$	$99 \cdot 48$	$999 \cdot 0$	$999 \cdot 4$	$999 \cdot 6$
4	$6 \cdot 93$	$8 \cdot 94$	$8 \cdot 63$	$30 \cdot 78$	$27 \cdot 94$	$26 \cdot 58$	$148 \cdot 6$	$132 \cdot 8$	$126 \cdot 2$
5	$5 \cdot 77$	$6 \cdot 16$	$5 \cdot 77$	$18 \cdot 01$	$15 \cdot 22$	$13 \cdot 94$	$61 \cdot 28$	$50 \cdot 50$	$45 \cdot 77$
10	$4 \cdot 08$	$3 \cdot 22$	$4 \cdot 54$	$13 \cdot 27$	$10 \cdot 67$	$9 \cdot 47$	$37 \cdot 17$	$28 \cdot 82$	$25 \cdot 17$
				$7 \cdot 56$	$5 \cdot 38$	$4 \cdot 32$	$14 \cdot 90$	$9 \cdot 90$	$7 \cdot 65$

* Multiply these values by 100 .

Table 4
Constants for modified approximation

n_{2}	95\% points		99\% points		99.9\% points	
	m	c	m	c	m	c
1	0.00000251	$65 \cdot 9$	$-84 \cdot 33$	3758	-46667	487600
2	0. 3461	$10 \cdot 723$	$0 \cdot 0042$	96.65	-0.0034	$998 \cdot 4$
3	$1 \cdot 066$	-1.23	$1 \cdot 826$	-46.67	-0.0972	$282 \cdot 9$
4	$1 \cdot 024$	-0.316	$1 \cdot 11$	-4.38	1.488	$-103 \cdot 4$
5	1	-0.06	1.05	-1.41	1.087	-14.78
6	1	-0.03	1.035	-0.68	1.038	-4.96
7	1	-0.01	1.027	-0.40	1.0225	-2.28
8	1	0	1.020	-0.25	$1 \cdot 012$	-1.19
9	1	0	1.015	-0.167	1.005	-0.67
10	1	0	1.013	-0.125	1	-0.42

References

Fisher, R. A., and Yates, F. (1963). Statistical Tables for Biological Agricultural and Medical Research, Edinburgh: Oliver \& Boyd.
Kendall, M. G., and Stuart, A. (1958). The Advanced Theory of Statistics, Vol. I, London: Charles Griffin.
Paulson, E. (1942). An approximate normalisation of the analysis of variance distribution, Annals of Math. Stat., Vol. 13, pp. 233-235.
Wilson, E. B., and Hilferty, M. M. (1931). The distribution of Chi-square, National Acad. Sc. Proc., Vol. 17, pp. 684-688.
Fieller, E. C. (1932). The distribution of the index in a normal bivariate population, Biometrika, Vol. 24, pp. 428-440.

[^0]: * Central Operational Research Department, Richard Thomas and Baldwins Ltd., Pye Corner, Nash, Near Newport, Mon. (now with MAS Branch, British European Airways, Bealine House, South Ruislip, Middlesex.)

