
Error estimation in the Clenshaw-Curtis quadrature formula

By H. O'Hara and Francis J. Smith*

Several error estimates for the Clenshaw-Curtis quadrature formula are compared. Amongst these
is one which is not unrealistically large, but which is easy to compute and reliable when certain con-
ditions are satisfied. The form of this new error estimate helps explain the considerable accuracy of
the Clenshaw-Curtis method when the integrand is well behaved; in this case the method is nearly
as accurate as Gaussian quadratures. It is argued that the Clenshaw-Curtis method is a better
method for evaluating such integrals than either Romberg's process or Gaussian quadratures.

(First received November 1967)

1. Introduction

Clenshaw and Curtis (1960) have described a method for
evaluating a definite integral by expanding the integrand
in a finite Chebyshev series and integrating the terms in
the series one by one. This has been shown in practice
to be an efficient method for evaluating integrals because
of the accuracy and simplicity of the method, and because
of the ease with which it is possible to estimate the error
(Clenshaw and Curtis, 1960; Fraser and Wilson, 1966;
Wright, 1966; Kennedy and Smith, 1967).

Two methods for estimating the error have been given
by Clenshaw and Curtis but these usually give rise to
conservative error estimates. In this paper we compare
these with some new error estimates one of which, \Effi\,
is a close error bound and reliable when the conditions
in equations (13) and (14) are satisfied. We attempt an
explanation why the Clenshaw-Curtis method gives
results nearly as accurate as Gaussian quadratures for
the same number of abscissae.

In the last section we give some examples which
support the view that, in general, the Clenshaw-Curtis
method is a more efficient method for evaluating inte-
grals than Gaussian quadratures or Romberg's process.

In the following we will always assume that the com-
puter word length is large enough that rounding errors
are negligible.

2. Theory
In the method of Clenshaw and Curtis the interval cf

integration is first changed to (—1, +1) and the integral
written in the form

/ = (1)

The function F(t) is approximated by a finite Chebyshev
series

Fit) = S " arTr(t) (2)

where 2 " denotes a finite sum whose first and last terms
are to be halved. The coefficients ar are calculated from
the equation

_ 2 N
tr -nrs / TTS\

r Â  ^n Â  \ NJ

and the series in (2) is integrated term by term. It has
been shown (Imhof, 1963; Smith, 1962 and 1965) that
this process of Clenshaw and Curtis is equivalent to a
quadrature formula

where the weights h(
s
s) are given by

i sin g %
N N iti

for 1 < J < N — 1,

Some of these weights have been given by Fraser and
Wilson (1966) but they are easily computed to any
accuracy at the beginning of a computer program for
the values N needed.

If the integrand F(t) is expanded in an infinite Cheby-
shev series

00

where 2 ' denotes a sum whose first term is to be halved,
the error EN = I — IN is given by

i/v-i iN-l

EN =
rto 4r2-\

Af-I

+
12N+2r

ftx (AT + 2r 2r -

in which we have assumed that N is even and that terms
equal to and higher than A3N are negligible. By com-
bining the first and second summations Clenshaw and
Curtis obtained one of their error estimates (we will dis-
cuss this later), but by combining all three summations
considerable cancellation occurs, especially in the first
and third summations, with the result that EN takes the
simpler form:

16.1.TV
12\ W4 2

'JV+4
16.2.N

(N2 -32)(N2-52)'
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Clenshaw-Curtis formula

16(iV/2 -
- 3) 2N~2N~2

J2iV+2 + . . . ( 9 )

This new form for the error gives us some insight into
the accuracy of the Clenshaw-Curtis formula: because
of the fast convergence of the Chebyshev series, the
first Chebyshev coefficients AN+2, AN+4, etc., are the
largest in (9) but the factors of these first coefficients, of
order l/N3, are the smallest. The scalar product of the
factors and coefficients is therefore a sum over a number
of small terms.

It is interesting to note that the result thus obtained
with the approximate Chebyshev coefficients ar is better
than that which would be obtained by integrating the
finite Chebyshev series with the exact Chebyshev coeffi-
cients Ar. The coefficients ar effectively take cognisance
of the 'higher harmonics' and eliminate a major part of
the error due to them. Hence the Clenshaw-Curtis
method has an accuracy considerably higher than order
N and usually has an error not much larger than that
obtained with Gaussian quadratures. This result is
true for both well behaved and badly behaved functions
(we define a well behaved function as one whose
Chebyshev coefficients Ar converge quickly).

3. Error estimates

3.1. The Clenshaw-Curtis error estimates

Clenshaw and Curtis have suggested two methods for
estimating the error. In the first it is assumed that the
Chebyshev expansion for F{t) converges quickly. The
indefinite integral

dt

is written as a Chebyshev series with coefficients br,
and for the definite integral, x = 1, the largest of bN+,,
kbN^! and k2bN_3 is chosen as an error estimate, where
A: is a constant which they suggest should be taken as 1/8.
Three independent numbers are used to estimate the
error in case one or two should be accidentally small.
This is equivalent to choosing as the error estimate

l

32(iV —

1

;|2a;v-2 — aN\

where the quantities ar are computed using equation (3)
or using the simpler form:

2rsn
(10)

When the Chebyshev expansion for F(t) is slowly con-
vergent Clenshaw and Curtis assume that coefficients
higher than A3N can be neglected and that between
AN+2 and AiN the coefficients satisfy an inequality of
the form \Ar\ < KN/r. By combining the first and
second summations in (8) they show that \EN\ < 2KNjN.
The largest of \aN\, 2\aN_2\ and 2|a#_4| is then used to
estimate 2 KN/N. We call this E$\

We now look at the series in (8) and (9) again, and
deduce some other estimates.

3.2. Error estimate (a)
We begin by noting that for most regular functions

the convergence of the Chebyshev series is rapid; indeed,
in general, \Ar\ falls to zero exponentially as r increases
to infinity (Elliott, 1964). Therefore, the first term in
the series for EN in equation (9) is often larger than the
sum of the other terms. For example, if we define
\A2r\ in terms of |^AT+2| using the recurrence relation
Mr+2| = ^jvMrl> then a simple calculation shows that
the first term equals the absolute sum of the other terms
for the values of KN given in Table 1. Therefore, the

Table 1
Values of KN defined in equation (11)

4 6 8 12 16 24
0-28 0-12 0-14 0-21 0-24 0-28

N
KN

N
KN

32
0-28

48
0-28

64
0-29

96
0-29

128
0-29

192
0-29

first term dominates the series in (9) when

Mr+2Mrl < T > N + 2. (11)

This criterion is usually satisfied by analytic functions if
there is no singularity close to the real axis between — 1
and +1 (see, for example, the tables of Chebyshev
coefficients given by Clenshaw (1962)). In the case of
such a well behaved function twice the first term is an
error bound

32N
\E"\ <(N2- l)(N2-^9)\ JV+2'-

(It is worth noting that the asymptotic behaviour of this
error, EN~0(LArIN

3), is in agreement with that
obtained by Elliott (1965) using complex variable theory.)
Since in general 1̂ 4̂ +21 < AN = $\aN\, we can replace
MAT+2| by i\aN\, but because of the possibility that \aN\
might be accidentally small we use as our error estimate

16N

(iV2- l)(N2-9)
max [\aN\, - 2 | >

2k2\aN_4\) (12)

where we suggest, because of (11), that k is taken to be $
except when N = 6 and N = 8. This estimate shows
why Wright (1966) found empirically that the error
varied as aN/N3.
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The error estimate in (12) is reliable for well behaved
functions, but it must be used with care. It is not
difficult to find rapidly varying functions for which \Ej$>

Clenshaw-Curtis formula

Table 2

Coefficients CN appearing in the error estimate
is not a bound to EN. For example, if F(t) has a dis-
continuity AF at t = a then it is easily shown that

Ar = — AFsin (ra) -\ \ F' (cos 6) sin rO sin
77"/* TTT -L

so |y4r| falls to zero at a rate 1/r. Similarly if F(t) is
continuous but F'(f) is discontinuous then \Ar\ falls off
at a rate 1/r2. Worst of all, if F{i) is a delta function
the coefficients Ar have no limit; they oscillate between
a maximum and minimum value for all r. Even if F(t)
and all its derivatives are continuous it may change
rapidly at some point in the interval (perhaps due to a
pole just off the real axis) and it may then be approxi-
mated by a function containing a delta function or a
discontinuity. In this case the behaviour of Ar for
small (practical) values of r will be like that for the
approximate function and the error estimate \Eff\ is
liable to failure.

To guard against this failure we suggest the following
checking procedure. As we have shown in Table 1 the
first term in the series dominates the error expansion in
equation (9) if \Ar_2/Ar\ is less than about k = $, for
r > N + 2. We do not know these coefficients but we
can reasonably assume that the rate at which they are
decreasing is similar to the rate at which the last four
coefficients \a\ are falling towards zero. Therefore we
check that

\\aN\ \aN_2\ k2\aN_ (13)

where we suggest k is taken to be \. As a further check
we note that \lN — 7N/2| should be a good error estimate
for the quadrature INn if the coefficients are falling
quickly. Therefore we check that

~ Im\. (14)

Only if these four inequalities are satisfied do we accept
|£(o)|

3.3. Error estimate (A)
If the estimate (a) fails either another estimate or a

different method must be used to evaluate the integral.
Let us assume that we know the function is continuous
with no sharp peaks; then at worst the coefficients Ar
fall off as 1/r2. We write Ar = KN/r2 for r > N and
sum the right-hand side of equation (9) to infinity. Then
putting

- 2

we find a new error estimate

CN\a (15)

where CN is a function of N only. The values of CN
given in Table 2 show that CN is close to f for most
values of N. As in equation (12) we use \aN_2\, WN-A
and (for reasons we explain in the appendix) \IN — INH\

N 4 8 16 32 64 128 256
CN 0-586 0-628 0-646 0-654 0-658 0-660 0-662

in case \aN\ is accidentally small. So our error estimate
(b) has the form

\E™\ = CNmax [\aN\, 2|«JV_2|, \IN - IN,2\]. (16)
This is very similar to the error estimate \Eff>\ °f

Clenshaw and Curtis. It has the advantage, however,
that we can easily add a check that it is probably a
bound. In its derivation we assumed that Ar fell off at
least as fast as 1/r2. This suggests the condition

— K | < (N - 2)2K 2| < (N - 4)2K 4|
< ( A T - 6 ) 2 K _ 6 | (17)

and the furthtr condition

3.4. Error estimate (c)
Another error estimate, similar to this, can be obtained

by comparing IN with the integration formula derived
by expanding F{t) in a Chebyshev series of the second
kind:

F(t) =
r = 0

Following the derivation of (4) with Tr(x) replaced by
£/,(*) we obtain a new quadrature formula (N even)

where
_ 4 SIT *» sin [(2/ - 1)STT/N]

This formula is effectively the same as that described by
Fillipi (1964). It bears an interesting relation with the
Clenshaw-Curtis formula, for the difference between the
two has the simple form:

This and the result in (9) shows why I'N is usually less
accurate than IN, a result found in practice by Wright
(1966).

Since the two quadrature formulae IN and I'N fit
different orders of polynomials to different points (the
Clenshaw-Curtis formula includes the end points; the
formula based on the polynomials U£t) does not) they
are independent and the expression in equation (19) can
be used to estimate the accuracy of IN. We call this
error estimate \Etf\ It is related to the Clenshaw-
Curtis estimate \E^\, since to a good approximation
|£XC)| = 4|£#)|. The similarity between the two esti-
mates clearly arises because, as is readily shown, the
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Clenshaw-Curtis formula

derivations of the two estimates are not independent.
The error |£#°| has been used with great effect and
reliability by Kennedy and Smith (1967) in some recent
physical calculations, but because conditions for its use
are not as clearly denned as for the previous two error
estimates \Etf>\ and \E$\ we feel the latter two are
probably better in most cases.

3.5. Comparison of error estimates
The error estimates \Etf>\, \E$>\, \Etf>\ and the

Clenshaw-Curtis estimates \E}p\, \E^\ are compared in
Table 3 for four integrals which are typical of those we
have tested. Estimates which are not bounds to the
error are underlined.

An examination of the table shows that there is not a
great deal of difference between the different estimates,
except that \E^\ is a closer bound than the others for
well behaved integrands when N is large.

As we have already explained this error and \E^\
have the advantage that we have specified the con-
ditions (13) with (14) and (17) with (18) respectively
which should be satisfied before these errors are accepted
as bounds. We tested these on a large number of
integrals by introducing a parameter fi and by changing
the variable of integration in (1) from t to x where

(p+l)x + p-l
(P-l)x+p+l'

The integral can then be put in the form

, x)dx.

(20)

(21)

We let j8 take 100 values between 0-5 and 1-5; this
allowed us to test the above conditions on 100 different
(though similar) integrals for each function F(j). Seven-
teen different integrands F(t) were chosen, those in
Tables 3 and 4 and the following:

r*'2 dx rn

Jo 1 + c o s x ; Jo

r1 r1

J o ' J o 1
r1

Jo 1

o

4dx

dx
+ 25x2

dx

o 5 + 4 COSJC'

dx

o 256(x -

J <f>{x)dx; J +(x
o

r™
x cos-

0
where

r1 f1 dx
Jo

 V * ' Jo 1 - 0-998*4'
,.(5/4)3 + 1

J (x - %x -

20xdx

Z-*
Of these seven might be called 'well behaved' and the
rest 'badly behaved'.

The error estimates and accompanying conditions
were checked automatically on these functions for N = 4,
8,16,32 and 64 (when rounding errors were not dominant)
which, in all, amounted to several thousand tests. The
results obtained were as follows:

(1) Out of 6505 tests, \Etf>\ failed to be an error
bound on 3416 occasions, but the conditions (13) and (14)
detected this failure in 3404 occasions and failed
only on 12 occasions all for the extreme example

i'r dx

+ x

f_jtc
•Sx4

1'r dx
+ lOOx2

J (|* + i\y'2dx

N

Table 3

Error estimates for Clenshaw-Curtis quadrature

ERROR

4
8

16

4
8

16
32

4
8

16
32

4
8

16
32

O-993(-5)
0-640(-9)
0-209(-14)

0 103(-2)
0-936(-5)
0 103(-8)

0-965(-2)
O-31O(-3)
0 142(-6)
0-356(-10)

0-627(-l)
0161(-l)
0-645(-2)
0-213(-2)

0-536(-2)
0-929(-6)
0-268(-12)

0-865(-2)
0-405(-4)
0-249(-7)
0174(-13)

0-265(-2)
0-433(-3)
0-646(-5)
0-168(-8)

0116(-l)
0-698(-3)
0118(-3)
0-226(-4)

0-123(-2)
0-920(-9)

0-245(1)
0-427(-l)
0-498(-4)
0-673(-10)

0-438(0)
O-53O(-l)
O-818(-3)
O-982(-6)

0-323(1)
0-694(-l)
O-238(-l)
0-415(-2)

0-539(-l)
0-566(-5)
0-234(-12)

0-932(—1)
0197(-3)
0-126(-7)
0-207(-14)

O-355(-l)
0115(-2)
0179(-5)
0 109(-9)

0-123(0)
0186(-2)
0-326(-4)
0-147(-5)

0-244(-l)
0-227(-4)
0-413(-9)

0-137(0)
0-515(-2)
0-542(-5)
0-667(-8)

0-136(0)

O-528(-3)
0-488(-6)

0-152(0)
0-436(-l)
0-620(-2)
O-283(-2)

0-236(-l)
O-973(-5)

0-408(-l)
0-339(-3)
0 195(-6)
0132(-12)

0156(-l)
0 198(-2)
0-276(-4)
0-694(-8)

0-538(-l)
O-319(-2)
0-504(—3)
0-931(-4)
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Clenshaw-Curtis formula

-2

15
Log^N)

Fig. 1. A comparison of the root mean square error,
E, obtained in evaluating 100 integrals based on
F(t) = (1 - 0 - 5 / 4 ) - 1 and 0 < f < l — s e e the text for
details—by the methods: 1. Simpson's rule (equal intervals);
2. Romberg's method; 3. The (7-8) rule; 4. Gaussian quad-
rature; 5. Clenshaw-Curtis method; 6. Interval subdivision.
The integer N is the number of function evaluations.

r"x cos2 20xdx for N = 4. This shows that the use of
Jo
only 5 abscissas cannot be recommended for the evalua-
tion of an integral without additional information.

(2) Out of 4140 tests, \Eff>\ failed to be an error
bound on 641 occasions, and the conditions (17) and (18)
failed to locate 23 of these, a few times each for 4 of the
badly behaved functions.

Thus we conclude that \Ej^\, in conjunction with
conditions (13) and (14), is a reliable method of esti-
mating the Clenshaw-Curtis quadrature error for N > 8.
When these conditions are not satisfied we can use I-E '̂l
along with conditions (17) and (18), but not with any
great reliability because as our examples show these
conditions occasionally fail. We therefore recommend
that if conditions (13) and (14) are not satisfied the
integral should be evaluated by subdividing the range of
integration and using low order quadratures in each
subinterval (Wright, 1966).

There is always the possibility that the conditions (13)
and (14) might fail, although we found no such cases.
When extra reliability is required it is therefore advisable
to demand an accuracy of an extra figure or two more
than that required. For example, N could be increased
till \Etf>\ < e/10, where e is the tolerated error. This
would reduce the probability that \Eff\ < \EN\ by about
a factor 103, since \Effi\ is the largest of three nearly
independent calculations—see equation (12).

4. Comparison of quadrature formulas
We have compared the accuracy of a number of

methods of integration with the Clenshaw-Curtis
method. In previous comparisons of this kind in the
literature single functions were used. Because of the

Fig. 2. As in Fig. 1, with F(t) = (1 + 100 r2)-1 and 0< f < 1.

O5 10 1-5
Log0(N)

Fig. 3. As in Fig. 1, with F(t) = \t + $\1'2 and - 1 < t< 1;
lines (2) and (3) are not shown because they lie close to lines (1),
(4) and (5).

possibility that a particular function might be a special
case we adopted the process, already described, in which
the variable of integration is changed from t to x as in
equations (20) and (21). The quadrature formula IN is
then a function of /3 and has the form

IN(P) = ? «(s(j8, x,) (22)

where co; and x, are the weights and abscissas of the
quadrature formula concerned. We evaluated the
quadratures for a hundred values of j8 between 0 • 5 and
1-5 for each function and we use the root-mean-square
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Clenshaw-Curtis formula

error as an estimate of the accuracy of the quadrature
method for that function. Results for three typical
cases are shown in graphical form in Figs. 1, 2 and 3.
(The lines joining the points have no special significance:
they simply link together points for one quadrature
formula.) Amongst the methods compared are Simp-
son's rule, Romberg's method (Romberg, 1955), the
7-8 rule (Smith, 1965), Gaussian quadratures and a
method based on interval subdivision and a low order
Clenshaw-Curtis quadrature in which the abscissas are
concentrated near any irregularity in the function. This
will shortly be published (O'Hara and Smith, 1968).

It is clear from these examples (and many others) that
(1) the Clenshaw-Curtis method is much more accurate
than Romberg's process for a well behaved function—
it is regularly two, three or four figures more accurate;
(2) it is nearly as accurate as Gaussian quadratures, but

it has the advantage that error estimates are easily cal-
culated and that little work is lost when the number of
abscissas is doubled; and (3) a method of interval sub-
division is the most satisfactory if the integrand is badly
behaved. We argue therefore that the Clenshaw-Curtis
quadrature and error estimate \Effi\ should be generally
adopted for the evaluation of integrals provided that
the integrals satisfy the conditions in equations (13) and
(14).
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Appendix
The difference \IN — IN/I\ c a n always be used as an

error estimate for any quadrature formula. Unfor-
tunately it is well known that such estimates often fail.
In practice, however, for the Clenshaw-Curtis method
\?N — INH\ is found to be close in magnitude to \aN\
and to |aAr_2|, especially if the integrand is badly
behaved. Examples can be found by examining the
tables of results given by Fraser and Wilson (1966). A
large number of other examples have been given by
Kennedy (1967). An explanation can be found by
writing IN — IN/2 in terms of the coefficients Ar using
equation (9), i.e.

TN~ I Nil — 2
1 1

lN/2 ((M2-4)2-l~

2)2-l (A//2+2)2-
1

-2(l-3~(JV-2)2-l) V+N2-l)

If the coefficients Ar fall off slowly then those near AN

dominate and \IN — IN/2\ is of the same order of mag-
nitude as |ajv|, |cfjv—2I o r la/v~4|- This is illustrated in
Table 4. We can therefore use \IN — IN/2\ as a check
that both aN and aN_2

 a r e n o t both accidentally small
(or vice versa) as in equation (16).

(See overleaf for Table 4)
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Clenshaw-Curtis formula

Table 4

Values of \aN\, \aN-2\, \aN-4\ defined by equation (3), and | /N — 7N/2| defined by equation (4)

1 dx
IT +x2

L dx

o 1 + 100*2

dx
1 - 0-98*4

8
16

8
16
32

8
16
32

0-645(-5)
0-235(-10)

0156(-l)
0-440(-3)
0-222(-6)

0-252(1)
0-732(0)
0-744(-l)

0-859(-4)
0-425(-9)

0-963(-2)
0-409(-3)
O-373(-6)

0-262(1)
0-761(0)
0-774(-l)

I«JV-4|

O-94O(-3)
O-655(-8)

0-265(-l)
0-242(-3)
0-491(-6)

0-294(1)
0-853(0)
0-868(-l)

| / ^ —/AT/21

0-589(-4)
0-828(-9)

0-997(-2)
0-31O(-3)
0142(-6)

0-960(0)
0-954(-l)
0-318(-2)

Book Review

Modern Factor Analysis, by HENRY H. HARMAN, Second
edition, revised, 1967; 474 pages. (Chicago and London:
The University of Chicago Press, $12.50 (104s.).)

Factor analysis has been applied in many fields and, it seems,
to research problems of all kinds. Among the applications
listed in this book, for instance, is the investigation by
Sackman and Munson, reported in the ACM Journal in 1964
into computer operating time and system capacity for man-
machine digital systems. The application of statistical tech-
niques and mathematical models to such problems is gratifying
and this kind of applicability may be regarded as a recom-
mendation in itself for the factor approach. It should be
pointed out, however, that factor analysis has been generally
considered to be a method employing geometrical concepts
born out of the necessity to interpret multi-dimensional
relationships between variables. This analysis exploits the
variations and correlations of the variables, and the rather
difficult statistical theory underlying some techniques has
not yet been completely worked out. A consequence of this
is that significance testing is not always available in appli-
cations. In any case, the process of identification of factors
has inherent non-uniqueness which causes difficulties of inter-
pretation. Nevertheless, factor analysis with its variety of
techniques will continue to provide a valuable means of
interpreting data for an increasing number of applied
problems.

This book is the second edition of an important text which
first appeared eight years ago dealing with the methodology
of factor analysis. There has been a considerable revision
of the structure and content of many chapters in order to
reflect the changed emphasis between the various factor tech-

niques. Principally these changes concern the shift from
hand-machine to computer techniques; many flow diagrams
and detailed references to computer software are given in the
book. Another improvement is the more general use of
matrix notation which makes the presentation more consistent.

The first four parts of the book embrace the foundations of
factor analysis, direct solutions, derived solutions and factor
measurements. A final part of the book consists of problems
and solutions. Used as a textbook a student may well find
it inconvenient to have not only answers at the end of the
book but problems also. An elementary introduction to
matrices and Cartesian geometry is included in two chapters
of the first part. The numerical processes of factor analysis,
the solution of linear equations, matrix inversion, deter-
mination of eigenvalues and rotation of axes are discussed
in turn in separate parts of the book, and detailed descriptions
of hand-machine processes are given. References to more
efficient developments in computer methods developed in the
past decade are mentioned briefly but not discussed.

This book will clearly continue to serve as a valuable text
for research workers who are concerned with the interpreta-
tion of multivariate data whose needs are not fulfilled by the
more widely used and understood techniques like multiple
regression analysis. It still provides the best introduction
to the terminology, concepts and methodology of factor
analysis. The presentation throughout is of a high standard
and the author has taken pains to strengthen the content of
this second edition, not least the bibliography in which almost
one third of the 550 listed works have appeared since the
publication of the first edition.

R. W. HIORNS (Oxford)
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