
An offset vector iteration method for solving two-point
boundary-value problems

By C. F. Price*

An offset vector iteration technique is proposed for solving two-point boundary-value problems.
In this paper the properties of the method are explored. Application to parameter selection is
first considered and convergence properties are described; comparison is made with other
numerical methods. The two-point boundary-value problem is shown to be equivalent to the
parameter selection problem. The method generally has a lower convergence rate than second
order techniques; however, in many applications each iteration requires relatively few computa-
tional operations. Therefore it is competitive with higher order numerical procedures in
applications that require few iterations to obtain an acceptably accurate solution. A modification
to the offset vector method is suggested which takes advantage of the finite difference information
generated at each iteration.

(First received September 1967 and in revised form February 1968)

1. Introduction

The use of offset vectors to develop iterative techniques
for solving two-point boundary-value problems is a
numerical procedure that has been proposed and
investigated for use in near-earth (Godal, 1961), (Price
and Boylan, 1964) and interplanetary guidance applica-
tions (Battin, 1964a), (Slater, 1966). The advantage of
the method, when it can be applied, is that each
iteration is often computationally simple to mechanise,
relative to other techniques. In fact, there is evidence
that it converges sufficiently rapidly in some cases to
permit its use in real-time airborne guidance systems
(Price et ah, 1964). This study was motivated by the
desire to utilise an offset vector method for solving
certain two-point boundary-value problems that repre-
sent necessary conditions for optimal trajectories. An
example of such an application is presented in a recent
paper (Price, 1967).

The concept of the offset vector method is easily
understood and motivated through a simple, familiar
example. Consider the problem of hitting a target with
a projectile fixed from a gun that is stationary with respect
to the target. Let the direction of the gun barrel on the
jth shot be designated by a unit vector, ihj = 1 , 2 , . . . ,
expressed in an appropriate coordinate system. On the
first shot, j = 1, i"i is some function,

i, = / , (r r ) ,

of the target's position, rT. Suppose the first shot
misses the target by a miss-vector, Aru such that an
impact point, r,, is defined by

r\ = rT + Ar,.

Using whatever quantitative knowledge of the miss he
has, the gunner attempts to make an intelligent choice
of the pointing direction on the next shot. If it happens

that i2 is expressed in the functional form (however
crude)

h = h(rT - Ar,)

where (r r — A/-]) is a 'dummy' target position, we say
that an offset vector iteration technique is being used.
By analogy, on the £th iteration

ik+1 = — Ar, - Ar2 - . . . - ; k = 1, 2 . . .

The philosophy is that on each iteration the aiming point
is changed by the negative of the miss-vector. It is
shown in this paper that such an approach is applicable
to solving two-point boundary-value problems; in fact
the above example can be formulated as such a problem.

Offset vector methods are ad hoc in nature because no
general quantitative prescription is given for implement-
ing the iterations. In the projectile example, the
functional form of ik+l{ ) depends upon the sophisti-
cation of the fire control system. This point is
emphasised in the subsequent discussion. However, it
appears that the convergence properties of the technique
can be described, to some extent, without reference to
any special application, and comparisons can be made
with other numerical procedures. That is the primary
purpose of this paper.

In the next three Sections the concept of offset vectors
for solving parameter selection problems is more
precisely defined, convergence properties are described,
and a simple example is presented. In Sections 5 and 6
it is shown that the two-point boundary-value problem
reduces to that of parameter selection and results of
utilising the method in a typical physical application are
given. In Section 7 a modification to the offset vector
method is suggested which takes advantage of the finite-
difference information generated at each iteration. This
provides a means for making a transition from the offset
vector method to a finite-difference version of the
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Boundary-value problems

Newton-Raphson technique in situations where many
iterations are required.

2. An offset vector method for solving the parameter
selection problem

Parameter selection or equation solving is simply the
task of finding a value of an n-dimensional vector
x = X.O which satisfies the vector equation

g(x) = 0. (1)
In parameter optimisation problems, equations of this
form are necessary conditions that a function </>(x) have
a stationary point. We assume that g(x) also has
dimension n and that at least one solution of eqn. (1)
exists.

Numerical techniques for solving eqn. (1) depend
upon having an initial guess x0 that is 'near' the desired
solution JCoo and improving that guess by iteratively
generating a sequence {x0, xu . . .} which converges to
xx. Criteria for convergence of the sequence are
usually given in terms of sufficient conditions satisfied by
g(x) in a region about xm containing xQ.

The most important property of any particular
numerical method is the total time required to achieve a
sufficiently accurate solution for xx. This is dependent
upon two factors—the number m of iterations required
to obtain a value xm that is sufficiently close to xx, and
the computational complexity of each iteration. One
often observes that these factors are inversely related;
that is, the simpler each iteration is to perform, the more
iterations required to obtain a desired level of accuracy
in the solution. This characteristic is evidence of the
fact that the amount of progress made in each iteration
toward x^, i.e. the convergence rate, depends upon the
amount of information used about g(x) in deriving the
recursion expressions.

Because the total time required for convergence is
often dependent upon inversely related factors, it is
difficult to state a priori in any particular application
which of the various numerical methods is most
advantageous from a computational point of view.
However, if any initial guess x0 is quite close to xm,
relatively simple iteration techniques may accomplish
the required degree of accuracy with no more, or few
more, iterations than more elaborate methods. This
rationale provides the motivation for describing an offset
vector iteration technique which is potentially simple to
implement and is based upon the idea of having a
reasonably accurate initial guess x0; in fact, the structure
of the method is defined by the manner in which x0 is
chosen.

Suppose one can find an n-dimensional vector function
g(x) that approximates g(x) such that the solution
x = x0 of

g(x) = 0 (2)
is relatively easily determined.* For example, g(x) and

* This is not to say that XQ need be determined by an explicit
formula; the solution to eqn. (2) may also have to be obtained
numerically. An example of this kind is given in Section 6.

Six)

(a)

i(x) may be of the
g(x)-
g(x)-

form
= gJr
= g +

• Gx + ef{
Gx

W = o
= 0

Fig. 1. Graphical development of the first two iterations of
the offset vector method applied to a scalar function g(x)

(3)

with e a constant scalar, g a constant vector, G a non-
singular matrix and f(x) some nonlinear function of x.
If the term ef(x) is small relative to g(x) for x near xm,
the solution x0 — —G~ig, is near xm. Let us write the
solution to eqn. (2) as

Xo=g-l(O) = KO) (4)

where g~l( ) represents the required inversion of g( ),
and the argument 0 refers to the value of the right-hand
side of eqn. (2). The situation is illustrated graphically
in Fig. la for n = 1.

Having x0, we can evaluate

g(x0) = go, (5)

noting the eqn. (1) is in general not satisfied, that is,
g0 ^= 0. Based upon this observation an improvement
to x0 can be determined by the following reasoning.
Suppose g(x) differs from g(x) by only a constant vector
/o, that is,

g(x) = g(x)+f0; for all x. (6)
Then

g(xQ) = - / o = g0.

If this be true, the solution to eqn. (1) is also the solution
to

i(x) - / „ = 0
or

g(x) = -g0. (7)

Thus we offset the approximating function by the
negative of the error determined in eqn. (5) and calculate

221

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/220/378746 by guest on 13 M
arch 2024



Boundary-value problems

xx from eqn. (7), using the notation of eqn. (4).

*i = K-g0). (8)

This sequence of operations is illustrated in Fig. lb.
The quantity — g0 is analogous to — Arj in the projectile
problem of the previous section.

In general, Xj does not satisfy eqn. (6) either, as
evidenced by

* ( * i ) = Si *> 0.

Accordingly, replace eqn. (6) by the conjecture

g(x) = g(x) - g0 + / , (9)

which leads to

g (*i) = —/i = g\

§00 = -g0 - gl (10)
resulting in

x2 = K-go-gi). (11)

These steps are shown in Fig. lc .
The recursion relationships required for the con-

tinuation of this method are readily inferred from the
preceding discussion. Define

= g(xi>

i = - 1 , 0 , 1 , . . .

Y-1 = —g-1 = 0
and let

(12)

(13)

(14)

Then,

Yi = Yi-i — gi'> i = 0 , 1, . . .

X; = g~\Yl- l) = hi.Yt- l )

At each iteration one evaluation each of g( ) and h( )
is required. The quantity y,- is referred to as the offset
vector. Now we shall discuss circumstances in which
the sequence {x0, xu . . .} generated by eqns. (12-14)
converges to Xoo-

3. Convergence properties
One expects that the convergence properties of the

offset vector method depend upon the accuracy with

(y,-_ i — gi) from eqn. (14) yields

Yi = — Ag[A(y,_i)]. (18)

Equation (18) is equivalent to eqn. (14) and is the
recursion for solving

Y = — Ag[/z(y)]. (19)

by successive approximations. The solution, yx, to
eqn. (19) is the limit of the sequence of offset vectors
{y0, yu . . .}. Viewed another way, it is the value of
g(Xoo). (See Fig. 1.)

Sufficient conditions for the convergence of the
sequence {y,} are known for successive approximation
iteration methods. For example, convergence is
assured (Todd, 1962) if Ag[h( )] satisfies the Lipschitz
condition

max|Ag[/i(y')] — Ag[/i(y")]| < fcmax|y' — y" | ;

0 < k < 1 (20)

for all y' and y" in a neighbourhood of yx containing

Alternatively, a recursion relationship for x, can be
derived from eqn. (14). Substituting for y,_i and y,_2

from respectively eqns. (14) and (13), we have

x( = h[— Ag(x,-_i)]. (21)

The solution of this expression with x, and x,_ i replaced
by x is the value of x = x^, that renders g(xj) — 0 and

A third way of viewing the iterative procedure is that
the sequence {g0, gu . . .} of evaluations of g(x,) is being
driven to a limit of zero. This is perhaps the most
natural point of view for the applications to be con-
sidered subsequently. From eqns. (12)—(14) it is evident
that g(Xj) is a nonlinear function of all g(xj), j < i, of the
form

gi = g [K0 ~ go - gi - • • • -g,-1)]. (22)

Similarly,

*/+ i=g[K0-go-gl-... -*,)]. (23)

rising gi+1 about g, with substitution from eqns.
14) we have

g,+, « g, - G(x,)H(Yl_ Jg,; i = 0, 1, . . . (24)

whichg(x) approximates g(x). To pursue this reasoning
define an error

Substituting x ;

Into eqn. (16)
eqns. (13) and

g\x

vector Ag(x) by

g(x) = #(x) + A#(x).

for x, we have

g(xt) = g(Xi) + Ag(x,).

we can substitute for £(x,) and
(14), producing

,) = gi = Yt-i + Ag[//(y,_i)].

Rearranging terms and substituting for the

(15)

(16)

X,- from

quantity

222

where

<>g(x).
dx ' (y-

Equation (24) indicates that

limg, = 0
i —y co

if \V-GH\\.

in some sufficiently small region
linearisation is valid. Note that

These convergence properties

_ M(y)
' ~ 7>y

< 1

about xa

i f * ( ) =
provide

(25)

(26)

, such that the
iO,GH=I.
a comparison
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Boundary-value problems

between the offset vector method and other procedures
that can be employed for finding xx. Considering
eqn. (19), perhaps the most significant observation is
that the method does not possess second-order conver-
gence because the gradient matrix corresponding to
eqn. (19),

in general (Todd, 1962). Thus a Newton-Raphson
technique, beginning at JC0 may require fewer iterations
to approach xm within a desired accuracy. However,
the offset vector method possesses two advantages that
motivate its use in certain situations.

First, applications arise in which g(x) cannot be
expressed in closed form, such as the solutions of many
two-point boundary value problems. In these cases
every evaluation of g(x) requires numerical integration
of differential equations. In addition, for Newton-
Raphson-type procedures the gradient matrix must also
be computed numerically, requiring additional complete
integrations of the appropriate differential equation. for
each iteration. Hence, if the approximation g(x) is
sufficiently accurate, one may conceivably reach a point
sufficiently close to xm with an offset vector technique
before a higher order method gets started. The offset
vector method has proved sufficiently rapid in situations
of this kind to be incorporated in a real-time airborne
guidance system (Price et al, 1964). An example of
such an application is included in Section 6.

Second, the offset vector method is a reasonable
starting procedure for a higher order method in situa-
tions where many iterations are required. The points
x0, xu . . . and associated values go,g\,... can be
stored to provide corrections, based on finite differences,
to subsequent evaluations of x,. A possible method for
accomplishing this is described in Section 7.

There is the disadvantage that some means must exist
for finding an appropriate g(x). Whether this can be
done depends upon the particular problem and the
analyst's ingenuity; for this reason the concept of offset
vectors does not provide a ready-made numerical
algorithm for attacking all parameter selection problems.
The fact that applications are known (see the references
mentioned in Section 1 and the example of Section 6)
where the method can be applied is a testimonial to its
usefulness.

4. Example 1
To illustrate the offset vector method, a simple one-

dimensional example is presented using equation
numbers corresponding to those expressions in preceding
sections which are exemplified.

Given

Let
g(x) = 1 + x + ex3 = 0.

g(x) =l+x.

(1)

(2)

Then
Yi = Yi-1 — Si

= *(y/-i) = Yi-\ — (14)

Using the criterion for convergence provided by eqn. (26),
we find that

G(x) = 1 + 3tx2; H(y) = 1

3x2\e\ < 1.

Furthermore, from eqn. (24)

(25)

(26)

(24)

which provides a measure of the convergence rate.
It should be emphasised again that the offset vector

method is not promoted especially for a high conver-
gence rate. In general, and for this example in par-
ticular, it converges more slowly than Newton's method.
The main advantage is the relative simplicity with which
each iteration can be performed. This is illustrated by
observing that the recursion relationships in eqn. (14)
for this example require two subtractions and one
evaluation of g{x) per iteration. On the other hand,
Newton's formula,

= Xi — *'(*/) =
dg(x)

dx

requires one subtraction, one division, one evaluation of
g(x), and one evaluation of dg(x)/dx per iteration;
clearly this entails significantly more computation. The
total time required to obtain an acceptably accurate
solution for xx is less for the offset vector method if |e|
is sufficiently small so that only one iteration of either
method is required.

In situations where g(x) has several dimensions and a
complicated functional form, the computational advan-
tages offered by an offset vector method are more signi-
ficant. As mentioned previously, it is competitive with
higher order techniques when a sufficiently good approxi-
mate solution can be obtained. In applications where
the problem must be solved repeatedly, as in rocket
guidance systems, considerable computational saving
may be gained. This is illustrated by the example in
Section 6.

5. The two-point boundary-value problem
The use of offset vectors to develop iterative techniques

for solving two-point boundary-value problems is a
numerical procedure that has been applied to near-earth
(Godal, 1961), (Price et al, 1964) and interplanetary
guidance (Battin, 1964a), (Slater et al, 1966) problems.
In this section it is shown that the convergence properties
can be stated in the same terms as for the parameter
selection problem.

A two-point boundary-value problem is posed by
assuming a given dynamical system described by
/i-dimensional vector differential equations

*= / ( * , ' ) (27)
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Boundary-value problems

with prescribed end conditions

) , t0] = 0
/] = 0

(28)

where t0 and tf are initial and final times, x is an
n-dimensional state vector, <D and >p are respectively
/- and m-dimensional vectors, with / + m = n + 2. It
is assumed that a solution exists which cannot be
determined in closed form, requiring the use of numerical
techniques.

We shall regard the solution to eqn. (27) known when
the complete set of initial conditions x(t0), t0 is deter-
mined such that eqns. (27) and (28) are satisfied. The
explicit dependence upon eqn. (27) is conceptually
eliminated by writing the solution as

x(t) = x[x(t0), to, t]

so that eqn. (28) becomes

(29)

= 0 (30)

Equation (30) has the form of eqn. (1) where the
parameters to be determined are x(t0), t0, and tf.

The offset vector method is implemented in a manner
analogous to that described in Section 2. Approximate
solvable relations

g[x(.t0), t0, tf] = 0 (31)

are derived, often by means of a simplified set of
,

differential equations
x=f(x,t), (32)

subject to eqn. (28). For example, eqn. (27) may
describe motion in a many-body gravitational field and
eqn. (32) may represent an approximating two-body
model with eqn. (28) specifying the initial and final
positions at specified times. The solutions xo(tOo), tOo,
and t/o of eqn. (31) are entered as initial conditions into
eqn. (27), and the differential equations are integrated
from /Oo to tfo producing

l), t/0]. (33)

Substitution of tOo, t/o and xo(fOo)
 f o r h, tf, and x(/0) in

eqn. (30) yields

S[*o0oo)> t%, t/o] = | 0 # 0

in general. Defining the vector

zT = [x(to)
T, t0, tf],

the iterative computation of the sequence {z0, zu . . .}
proceeds just as in Section 2 with the understanding that
each evaluation of

requires integration of eqn. (27).
The motivation for using offset vectors is now more

apparent. Vis-a-vis higher order methods it may be of

considerable computational advantage to obtain even an
algebraically complex form of eqn. (31) if computation
°f the gradient of g[x(t0), tQ, tf] is thereby avoided. A
practical multidimensional example of this type is
considered in the next section. Observe that the pro-
jectile problem discussed in the Introduction can also be
formulated as a two-point boundary-value problem and
its solution obtained in the manner described above.

6. Example 2
This section discusses an application of the offset

vector method to a practical two-point boundary-value
problem. Equation numbers denote those expressions
in previous sections which are exemplified.

Consider the motion of a body in a planar orbit in
the earth's gravitational field. If the earth's rotation and
atmospheric friction are neglected,* the equations of
motion are reasonably accurately represented by

x =

Z = V,

«--?['

JEA2 5JEA2z2~\

—2 ~ J

JEA2 5JEA2z2~\ 2JEA2z

(27)

where A is the equatorial radius, J and E are constants,
r =• -\/(x2 + z2), and x and z are position coordinates in
an orthogonal coordinate system with the z axis along
the earth's polar axis. Because the orbit is polar, only
two dimensions need be considered. Equations (27)
describe the gravitational accelerations including the
effects of the earth's slightly elliptical shape. Let us
pose the problem of finding the initial velocity com-
ponents, vx(tQ) and v£t0), required to transfer a body
from a given initial position at time t0 = 0 to a given
final position at a specified final time. Hence

x(t0) -ax =
z(t0) -a2 =

tf-Tf=0
(28)

where ax, az, bx, bz, and Tf are given.
For the case where the earth's oblate effects are

neglected (/ = 0 in eqn. (27)), the task of finding the
initial velocities subject to the given conditions is the
familiar Lambert's problem of classical mechanics. For
this case eqn. (27) can be integrated analytically by
changing the independent variable; several methods of
obtaining explicit expressions for g(x) are known
(Battin, 1964b). For J ̂  0, there is no known method
of integrating eqn. (27) analytically; hence a numerical
technique is required.

The offset vector method is naturally adapted to this
application by using the known solution to Lambert's

* It is recognised that neglect of the earth's rotation contradicts
the intent of treating a practical example. However, this effect can
be included without changing the qualitative interpretation of the
numerical results; it is omitted only to reduce the complexity of
the discussion.
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•*

Solve Lambert' s

problem
(Eqs.(25)

x

b

1 1
Integrate
Eqs.(21)

from tQ=0

t o tf=Tf

X±(Tp)

Evaluate
Eqs.(22) at

Compute

New

Position

Offset

Fig. 2.

Feedback to implement — — — — — — —
next iteration

Computational flow diagram of the <tb iteration in
Example 2

problem with / = 0 as an approximation. Introducing
J = 0 into eqn. (27) produces a set of equations repre-
sented by eqn. (32) in Section 5. For the terminal
conditions prescribed by eqn. (28), one form of g{x) due
to Godal (Battin, 1964b) is given by

17,(0) - Ct(bx - C2ax) = 0
v£0) — Ci(bz — C2az) = 0

r V(EP)

2. Integrate eqn. (27) from t = 0 to t = Tf using
ax, az, vx0(t0) and vz0(t0) as initial conditions.
Denote position on this trajectory by xo(t) and zo(t).

3. Evaluate the left hand sides of eqn. (28) for the
integrated trajectory. Define

rfr0 sin
= 0

C2 ~ 1 + rj(\ - cos 6) = 0

' / -
6 - cos-1

+ a2) = 0
+ %) = 0

yy) sin2 0-50
= 0

(B - c o s a) cos 0-50
B-(ro + rf)/2V(r0rj-) cos 0- 59 = 0

= xo(7» - bx

Azo(T/) = zo(7» - b,.
4. Recompute the initial velocities from eqn. (31) by

requiring

(31)

This implies that eqn. (31) undergoes the changes
of variable,

bx->bx- Axo(7» = bxo

(fl-COSa)(2a-sin2a)1) _
2 sin3 a J/~

The solutions to eqns. (31) are the proper initial velocities
to achieve the conditions in eqns. (28), neglecting the
oblateness of the earth. Observe that eqns. (31) are
transcendental in a; therefore their solution must be
obtained numerically. This represents a situation where
eqns. (2) cannot be inverted analytically.

The offset vector method proceeds by carrying out the
following steps:

1. Denote the solutions of eqn. (31) as vx0(t0) and
^zo('o); these are obtained by any convenient
numerical method. Newton's method has been
used in this simulation.

Denote the solutions as f^i^o) and vzl(t0).
Repeat steps 2 through 4 in an iterative fashion.
The functional diagram in Fig. 2 illustrates the
steps at the /th iteration.

For this simulation the following parameter
values are used:

ax = 2 093 X 107 feet
az = 0-0 feet
bx = 0 0 feet
bz = 3-0 x 107feet

£•== 1-407645 X 1016

J= 1-62345 X 10-3

A = 2 093 x 107feet
Tf= 2400-0 seconds

This roughly represents insertion into a 2000-mile
altitude orbit at a point above the pole from a point on
the equator. The computation was performed in double
precision arithmetic on an IBM 360/65 computer.
Newton's method is applied to solve Lambert's problem
and a Gill-modified Runge-Kutta integration technique
is used to integrate eqn. (27) with a 20 second time step.
The values of terminal position error, kx,{Tf) and
Azj(Tf), for two iterations are given in Table 1:
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Boundary-value problems

Table 1

Position error data from simulation
(Rounded off to 3 significant figures)

ERROR
QUANTITY

|Ax,.(7»|

Az,(7»|

i = 0
ERROR WITH NO

CORRECTIONS TO
LAMBERT SOLUTION

FEET

2-34 x 104

5-37 X 104

ERROR AFTER ith ITERATION

( = 1

FEET

1-51 x 10'

7-25 X 10'

J = 2

FEET

4-41 X 10-2

9-56 X 10-2

I s ' offset iteration

Ax I s t lineorized correction-

2 n offset iteration

(a) x-space

the former, any method that requires more differential
equations to be integrated is at a competitive dis-
advantage with the offset vector method. For Newton-
Raphson type procedures, the gradient matrix of g( )
with respect to vxi(t0) and vzi(t0) must be obtained. This
can be obtained numerically by perturbing each velocity
component separately and integrating eqn. (27) to
determine the effect on the end conditions. Obtaining
the complete gradient matrix by this procedure requires
n additional complete integrations of eqn. (27) per
iteration; this results in tripling the amount of integra-
tion required in this example, effectively tripling the
computation time for each iteration. The gradient
matrix can also be obtained by integrating the linear
variational equations associated with eqn. (27); how-
ever, the increased computation is of the same order as
that required to obtain the matrix by the perturbation
technique.

These comparisons indicate that the offset vector
method is superior to higher order methods in some
problems. The example considered here has application
to rocket guidance for which the thrust is directed so
that the vehicle's velocity matches the values of vxi(t0)
and vzi(t0) in Fig. 2. The two-point boundary-value
problem must be solved many times in rapid succession
because the initial time and the rocket's position are
constantly changing. For 'real-time' computation of
this sort, speed is a primary consideration.

I s t offset iterotion

(b) g - space g , —*•

Fig. 3. Progress of finite-difference modification of offset
vector method in two dimensions

Adequate accuracy is obtained in one iteration for many
applications. For these cases any other numerical
method that has an equal or greater convergence rate
can be compared on the basis of the computational
complexity of each iteration.

In this simulation the time required to solve Lambert's
problem with sufficient accuracy is approximately
0-01 seconds whereas that required for integrating eqn.
(27) is 0-30 seconds. Because the latter* dominates

• An integration step three or four times larger than 20 seconds
would give terminal position accuracy better than 100 feet in this
example.

7. Modified offset vector method
In Section 3 it is pointed out that the offset vector

method can serve as a starting procedure for higher-order
techniques. The possibility for doing this is evident at
the (n + l)th step after the sequences {x0, *,, . . . xn}
and {go,gi, . . . gn} have been computed. Denning

= X; - Xi_ ,
(34)

we have sufficient information to derive an approximate
gradient matrix (or its inverse) provided the Ax,'s (or
Ag-,'s) are independent. For example,

ox
(35)

where & and X are matrices whose ith columns are
respectively Ag; and Ax;. Faster convergence may
possibly be obtained by continuing the numerical pro-
cedure with a Newton-Raphson-like technique using G
to determine new values of x according to

X/+1 = ~GTl
gi (36)

where (?,- depends upon the last n values of Ag and Ax.
In this section we shall describe a recursive method
whereby the gradient information available at each stage
is utilised to adjust the offset vector computation,
producing results analogous to eqn. (36).
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Boundary-value problems

Consider the first two steps in the offset vector method
after which x0, xu g0 and g, are known. These 'points'
are indicated for a two-dimensional case in Figs. 3a and
3b. With Ax, and Ag, thereby determined, we can
calculate the required first order change Ax,' in x to
produce a desired change Ag' in g in the direction of
Ag,:

Ax, =
|Ag,|

Ax, (37)

Note that Ag' is a scalar that may be either positive or
negative. Out objective being to drive g to zero, to first
order (approximately*), we can remove that component
in the direction parallel to Ag, by defining

Ag,
|Ag:|

x,' = -(g,.fAgl)Ax,/|Ag,|

x[ = x, + Axl

g[ = g, + Ag,.

(38)

These quantities are illustrated in Fig. 3. Note that
—(g,./Agl) in eqn. (38) plays the role of Ag' in eqn. (37).

There is as yet no gradient information available in
the direction normal to Ag, so, at this point, return to
the offset vector algorithm. First, using eqn. (13)
calculate the value y0 of the offset vector that cor-
responds to x,':

Vo=g(.x{). (39)

igi + ^gl=gi, (40)

note that exact equality does not hold because Ag,' is
computed from a linearised analysis. Now let

Assume that

r i = yo — g\

x2 = h(yi)

gi = g(x2).

(41)

This completes a new step in the iteration process.
Observe that the same number of evaluations of g(x)
are required as for the offset vector method. The
difference is that x2 is computed with the aid of an
intermediate value x[ that is calculated by a finite dif-
ference projection.

From x2 and g2 the quantities

Ax2 = x2 — x,; Ag2 = g2 — g, (42)

are calculated as illustrated in Fig. 3. In the two-
dimensional case Axi, Ax2, Ag! and Ag2 provide suffi-
cient information to continue the search for xa) by a
finite difference method alone, provided the Ax's and
Ag's are independent. In higher dimensions we can
proceed as before, calculating an intermediate x2 based
upon finite difference projections in both Ag, and Ag2

* This is not an exact first order calculation because the gradient
in the direction Agi is computed from a finite difference.

x

(Ag 2 - i

(a) x — space

OJ

o>

(Ag2-

(b) g - space g, —••
Fig. 4. Illustration of orthogonalisation of the vectors Ag,

with the associated transformation on the Ax,

directions and using the offset vector to find corrections
to x2 in the remaining directions. Here we shall derive
a recursion based upon orthogonalisation of the vectors
Ag,.

Suppose Ag,, Ag2, Ax, and Ax2 are given as shown
in Fig. 4. The component of Ag2 orthogonal to Ag, is
given by

Sg2 = Ag2 - (Ag2./Agl)/A?l.

According to eqn. (37), the associated change in x
required to accomplish the increment 8g2 is given by

Sx2 = Ax2 - (Ag2.jagl/|Ag,|)Ax,.

Defining Sx, = Ax, and Sg, = Ag,, we can calculate
the change Ag2 required to drive the projection of an
n-dimensional vector g2 on the space of the orthogonal
vectors Sg, and Sg2 to zero. Requiring
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Boundary-value problems

we have

The associated change in x, Ax2, is given by
Ax2 = -(g2-hgj\8gi\)8xi — (g2.i&gJ\8g2\)Sx2.

Having Ag2 and Ax2, we can calculate x{, g2, yu y2, *3,
and g3 from eqns. (38), (39) and (41) by increasing the
value of each subscript by one.

This reasoning leads to the following set of recursion
relationships for deriving xi+l, having {x0, x,, . . . x,},
{g 0. gu ••• gih orthogonal directions {8g{, 8g2,... 8g,_,},
and the corresponding set of 'influence' directions
{3x,, Sx2, . . . Sx,_,}:

gi = g(*i)
Ax, = x, — x;_ 1

&gi = gi - gi-1

8g, = Ag, -

8x, = Ax,- -

ft' =

. 7 = 1

; + Ax;
/ + A&'

= Kyi)-

(43)
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