
The calculation of e to many significant digits

By A. H. J. Sale*

The interesting problem of accurate evaluation of the number e is discussed, and a new technique
proposed which evaluates the digits of e (to any base) in sequence. The technique is easily pro-
grammed in a high-level language, and an ALGOL 60 algorithm is given.

(First received November 1967, and in revised form April 1968)

The calculation of the transcendental numbers e and -n
to a ridiculously high number of significant digits has
always been a hobby of mathematicians and computer
programmers. There appear to be only three good
reasons for ever computing these numbers: to investigate
properties of the digital sequence produced; to illustrate
the accuracy that the digital principle of operation makes
possible, whether it is normally utilised or not; and as a
programming exercise. The calculation of e is in fact an
excellent example for students to program, and almost
always involves temporary storage, loops, and an
iterative or counting termination. The answer is, of
course, very easily checked.

Normally e is evaluated from the simple and well-
known infinite series:

in a slightly different guise:

1
e = oT

1 1 1

57
1

This series has a fast convergence and is easily com-
puted, as the terms may be easily computed from the
previous term, as shown by the table below:

I) •••))))

e,: = eo + eo/l
e2- = e1+ (eo/l)/2

Of course a computer word cannot usually accommodate
more than about 10-15 decimal digits, and for more
accuracy some sort of multiple-word arithmetic would
have to be planned. It will also be obvious that as the
terms get smaller, the truncation error when they are
added to the successive approximants for e will become
larger.

It is possible to reduce this error quite simply, by
evaluating the series from the other end. This requires
that the series be first truncated, for an infinite number e =
of terms is unacceptable. This is a change of pro-
gramming technique: first the required number of
terms is computed, and then the series evaluated—
instead of an iterative loop with a testing exit. Examina-
tion of the regrouped series for e, given below, shows
what is the well-known method of rewriting polynomials

* University of Natal, King George V Avenue, Durban, South Africa.

229

This is probably the fastest method of evaluating e, given
a suitable multiple-word division routine, since each
addition is only of 1, and not therefore of multiple-
length accuracy.

Further examination of the e-series in its nested
evaluation form shows that yet a third distinct method
of evaluation is possible. This method has the advantage
that it can be simply and economically implemented in
a high-level language, such as ALGOL 60 or FORTRAN.
(As an incidental benefit it can then be easily used as a
demonstration program.) The method also has the
characteristic that it produces the digits for e one-by-one,
instead of a final answer with the entire value. In a slow
computer it can be arranged that the computation time
is entirely or partially masked by the output delay, and
an effective speed increase can be demonstrated. This
approach has been very effective on the IBM 1620, which,
being a character-oriented machine, is also ideally suited
to the normal method of evaluation.

The method depends on the fact that except for the
first two terms of the series, each successive term, and
their sum, is less than 1. Suppose then that a truncated
portion of the series beyond the first two terms be
multiplied by 10: it will then consist of an integer part
(in this case 7) and a fractional remainder series. The
integer can be removed (and possibly printed), and the
process repeated, giving successively the fractional digits
of e. This process is most easily understood from the
example:

= 2 + do

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/229/378761 by guest on 09 April 2024



Calculation of e

(10 + 1(10 + . . .

(1+1(5 + . . .

= 2-7 + ^ - U

= 2-7 + ,-T^T

This, of course, neatly sidesteps all problems of cal-
culating e in binary notation and then being faced with
a conversion problem to decimal notation. It is very
simple to calculate e then to any desired base, for
example to base 7, or base 16, by performing the multi-
plication of the fractional part of the series by the
desired base. For binary computers a base of the form
2" can of course lead to extremely simple multiplication
by shifting. An important practical point is that if the
language precision permits, the multiplication (for
decimal output), may be by 10 or 1000, thus producing
two or three digits at a time, increasing the efficiency.
Typically: if a maximum integer size of 32767 is specified,
the algorithm allows the series to include all terms up
to 1/3276!, using a base of 10.

This method is interesting, and may in principle be
employed in evaluating other series, for example sin (x).
This, however, occasionally gives a negative digit,
indicating corrections to the previous digits, and thus
the digits are not necessarily correct as they are
computed.

A high degree of machine independence is also
achieved, since only integer arithmetic is involved in the
evaluations. This is therefore an alternative to the
procedure given by Naur (1967) to illustrate the concept
of machine environmental enquiries.

It is also likely that the highest accuracies for e can
be obtained this way, at least theoretically, for if the
memory size of a computer is k words then the available
accuracy in the normal method grows proportionally to
k, while with this method it grows as A:!.

References

The ALGOL 60 algorithm given below is self-con-
tained, and evaluates n decimal digits of e by this
method. It estimates the number of terms required in the
series to give n + 1 correct digits by using Stirling's
approximation for ml, increasing m from an initial value
of 4 until m! > 10f (n + 1). It will be obvious that
this arithmetic, even if performed in real mode, is very
likely to overflow the dynamic range of a real number.
The procedure therefore uses a logarithmic evaluation
and test. In practice it selects 73 terms of the series as
sufficient for 100 decimal digits.

The algorithm

procedure ecalculation (n, d);
value n;
integer n;
integer array d;
comment This procedure for calculating the transcendental

number e to n correct decimal places uses only integer
arithmetic, except for estimating the required series
length. The digits of the result are placed in the array
d, the array element d[0] containing entier(e), and the
subsequent elements the following digits. These digits
are individually calculated and may be printed one-by-
one within the for statement labelled isweep1.
begin integer m;
real test;
m := 4;
test := (n + 1) X 2-30258509;
loop: m := m + 1;
if m X (ln(m) - 1 0 ) + 0-5 X /«(6-2831852 X m)

< test then go to loop;
begin integer i,j,carry,temp;

integer array coef [2 : m];
for/ : = 2 step 1 until m do coef[j] : = 1;
d[0]:=2;
sweep: for i : = 1 step 1 until n do begin

carry : = 0;
for/ := m step —1 until 2 do begin

temp : = coef[j] x 10 + carry;
carry := temp -i-j;
coef[j]:— temp — carry X j

end of digit generation;
d [i] : = carry

end having calculated n digits
end deleting declarations

end of ecalculation;

SHANKS, D., and WRENCH, J. W., JR. (1962). Calculation of n to 100,000 decimals, Math. Comput., Vol. 16, p. 76.
YARBROUGH, L. (1967). Precision calculations of e and n constants, Comm. ACM, Vol. 10, no. 9, p. 537.
NAUR, P. (1967). Machine Dependent Programming in Common Languages, Nordisk Tidskrift for Informationsbehandling

Vol. 7, no. 2, pp. 123-131.

230

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/229/378761 by guest on 09 April 2024


