
Discussion and Correspondence
Software requirements of universities

by P. A. Samet*
The principal characteristic of the work load presented to a computer in a university environment
is the preponderance by number of very short jobs, taking only a small fraction of the total time.
The efficient and economic handling of this flood of small programs is a major problem and it is
the author's contention that the software normally supplied by the computer manufacturers is
unsuited to this type of load. The paper examines the needs of universities with reference to
batch-oriented and multi-access systems.

1. Introduction
The writing of compilers and specialised operating systems
is a major activity of many computing centres in universities.
To the extent that this is done to gain experience such effort
is very valuable: it is easier and better to teach techniques
of which one has first-hand experience. Often, however, the
motive for writing such basic software is simply the need to
provide a good service to one's users and stems from the
belief that the systems provided by the manufacturers are
wholly inadequate for the needs of a university service. This
belief, and the practice of having locally-written systems, is
so wide-spread and persistent in universities that it appears
relevant to enquire into the software needs of universities and
why these are apparently not being met by the computer
manufacturers.

2. The typical university workload
The main characteristics of computing in universities are

the very large number of amateur programmers and the high
proportion of small programs. One noticeable fact about
these small programs is that they are each used only a few
times, often indeed for only one 'production' run. There is
also, in general, a small number of jobs that require con-
siderable resources, either time or storage (or both); these
programs normally are connected with the long-term research
interests of the university and require the facilities of very
large machines. Providing the physical resources are
adequate, these large programs cause little difficulty to the
management of a university computing centre. The big
problem stems from the demand to handle the small
programs.

I have just referred to the number of programmers. This
is inevitably high. It is necessary to teach undergraduates
and it is necessary for research students to have computing
facilities. As there is a new intake of students each year this
teaching is a continuing load. It is also important to realise
that very few of these students are specialising in computing
science, mostly their concern is to become mathematicians,
physicists, engineers, economists, zoologists, linguists and the
like. They are taught because it is essential for the successful
prosecution of their studies that they have some acquaintance
with computing methods. As more and more disciplines
come to realise the uses to which they can put computers,
so this need for teaching is expanding. In the United
Kingdom we are at present not teaching anything like the
number of students who will actually need these skills,
although the number is going up rapidly. A few years ago
almost all the students who were taught were post-graduates,
whereas now it is becoming a requirement that under-

graduates—often still in their first year—become sufficiently
familiar with programming to use computers as normal tools
in their regular course work. Almost all of the programming
will be in a high-level language and this is, indeed, true of
the vast majority of work done in any university installation.

The programs written by this large body of students tend
to be very small. It should not be thought that they are only
classroom exercises or the results of programming courses.
More and more of these programs arise from their own work.
This is as it should be, but it does mean that there will be
many small jobs from this source. To get some idea of the
size of the problem, it is instructive to see what the potential
load would be if all the science based undergraduates in a
university were taught to use computers in their first year
and were able to use them as an adjunct to their normal work
thereafter. In London University there are about 15,000 such
students. If we assume that each student writes 20 programs
per year on average, that each of these requires four runs
before it is debugged, and that each run requires 15 seconds
on a machine like the IBM 7090, we have a requirement for
5,000 hours of 7090 time per year, equivalent to two shifts
every day of the year, and 1 • 2 million program runs per year.
This figure means a daily load of 3,500 programs if the
machine works a seven-day week. This is solely the under-
graduate load, without counting the research students or the
university staff. Extended to cover all students at colleges in
Britain such a load would require the full-time equivalent of
about four Atlas machines.

Many of the programs written in the course of research
work by staff and postgraduates will also come in the 'small
job' category. This is because, by and large, they do not
handle vast quantities of input or output, nor do they
normally require access to enormous files of information.
Basically what they need is speed, and modern machines can
supply this. The distribution of the work at the installation
with which I am most familiar, the 360/65 at University
College London, is shown in Fig. 1. I believe that this
distribution is fairly typical of other installations. The
information was collected over a period of eight months,
with several hundred programs being handled daily. What
is striking about these figures is that (just under) 50% of jobs
run for less than 1 minute but took only about 8% of the
total time, whereas only \\% of jobs took more than 20
minutes but accounted for 25 % of the time. There is also
a common belief that because scientific users do not have
large input/output requirements university installations do
not have any experience of handling bulk I/O. At UCL the
daily card-reading load is more than 150,000 cards with more
than 400,000 lines of output, and the work load on the
machine is still going up steadily. The matching of input

* Computer Centre, University College London, 19 Gordon St., London, W.CA.

236

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/236/378783 by guest on 13 M
arch 2024

Discussion and Correspondence

and output on this scale is a major management problem,
that I comment on later.

The figures of the previous paragraphs pin-point the
university problem: how to handle a very large number of
small jobs. This is the big task that justifies the big machine.

3. What the manufacturers supply
The usual justification for installing a very large machine

is that one's organisation has some very large problems that
have to be done at regular intervals. As I have tried to show
above, the university justification is the single enormous
problem of handling a large number of tiny jobs. The
majority of the programs run at UCL do not need a 360/65;
they could run equally well on a slower machine like a 360/40,
only then we would need about three machines, dedicated to
the small jobs, to cope with the volume, and still need a large
computer to deal with the long-running jobs. It is certainly
cheaper to have the faster machine. In short, we have to
use a 'number cruncher' as a 'student cruncher'. In my
experience the software that is currently supplied for large
systems is woefully inadequate for the university type of work.
The person who doubts this need only compile and run the
FORTRAN program

STOP
END

(or its equivalent in any high level language) thirty times in
succession. I have recently been told of one machine, newly
installed in a British university, and according to its speci-
fications roughly equivalent to a 7090, that would take an
eight-hour shift to cope with this test! As large numbers of
talented and experienced programmers work for the various
computer manufacturers, it is worth asking why there is so
much university discontent with their products.

First, I think, it has to be recognised that only a small
number of computers, in absolute terms, go to universities.
Indeed, there are not many large computers. The main
effort, therefore, has to go into supporting the medium and
small installations, most of which will work on a small
number of repeated jobs. The software has to be designed to
satisfy as wide a range of customers as possible. Mostly, the
software supplied does this, but universities are not typical
customers. For most users, what is important is the speed
at which the compiled program runs, not the speed of the
compilation, and in many instances high-level languages are
not demanded by the users. I comment on this further in § 4.

Another reason, at present, is the concept of families of
compatible machines. The attraction of compatible machines
is that programs can be transferred from one configuration
to another, with little or no trouble. The penalty, as I see
it, is that compilers and operating systems are written to
work within restricted minimum configurations. Gone are
the days when you could have any size of store provided it
was 32K, when you could choose the number of tape decks
required provided you ordered exactly eight. Now, one may
have a machine with a wide variety of sizes and peripherals
attached, but the system only makes use of an irreducible
minimum. It is rare that the facilities of the larger machine
can be fully utilised, although there are certainly some
systems that give the user a choice of trading store for speed.
Further, it is the small machines of a family that are first
available to the manufacturer's own software team, and it is
not until the larger members are available that mistakes in
strategy become apparent. This is especially so when
peripherals are involved: what is of virtually infinite speed to

S-3V. i-tv.

1 2 3 4 5 6 20
MINUTES

10

9

,l 8

* 7

u. 6
o

4

3

2

1

a-i

i//
y/A
///

i

9-9

i
i
y/.
y/A
/A

i

47-5

9 1

i
y/A
A/y

i

V.

7 8

/ / /

i

1
VA
///
i I

27 3 V.

•

252 V.
* *

1 2 3 4 5 6 20
MINUTES

DISTRIBUTION OF JOBS PROCESSED,
ANALYSED 8Y >

I. NUMBERS IN TIME INTERVALS.

1 TIME USED BY JOBS IN
PARTICULAR TIME INTERVALS.

Fig. 1

the small machine often appears as of zero speed to the
faster computer. Examples are the use of a small block size
on tape, use of disks as if they are random access stores,
failure to appreciate the effect of channel contention if
several devices share the same control unit. Multi-pass
compilers suffer terribly in this respect, yet they are a
necessity on a small machine.

I am sure that another contributory factor is the very size
of the software teams employed by the manufacturers.
Communication difficulties abound, it is difficult to have
adequate control over what is being written, and because a
major piece of software is written by so many people it has
to be broken into very many small segments with all the
attendant inefficiencies of passing parameters between these
segments. The software writers are, almost inevitably, remote
from the needs of the customers and also from their own
machines, which are normally operated on a 'closed shop'
basis. As a result, the people who write the operating systems
rarely see them working and are therefore unaware of many
of these shortcomings. I can think of no other explanation
for operating systems that refuse to recognise tapes and disks
that are mounted and ask for them to be moved to other
devices, for compiling systems that punch output onto a
paper tape and then require the tape to be cut up for re-input
in a different order, for systems that put 80-character blocks

237

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/236/378783 by guest on 13 M
arch 2024

Discussion and Correspondence

(i.e. single card images) on magnetic tapes while employing
packing densities of 800 bpi thereby giving an effective
transfer rate which is about one-eighth of the nominal tape
speed, for systems that require a minimum of 30 control cards
for even the simplest job.

4. What do the universities need ?
I have already pointed out that the main problems are:
(i) the large number of programmers, mostly interested in

subjects other than computing;
(ii) the large number of tiny jobs.
Virtually none of these programs will be written in an

assembly language, and this is, in fact, also true of the large
programs. The principal needs would therefore appear to be:

(i) very fast compilers,
and

(ii) operating systems with minimum overheads.
I discuss both of these in the next sections.

4.1. Compilers
The arguments, indeed battles, of the early days of com-

pilers, when many people had doubts about the technical
feasibility of producing a working compiler, let alone one
that generated good code, were a traumatic experience for the
manufacturers. It became so important to produce good
code that the compiling time was almost irrelevant. Tech-
niques for writing compilers are now comparatively well
understood (they even form topics in undergraduate courses)
but the emphasis is still far too often on the production of
good code. For the oft-repeated job this is, of course,
necessary, but even here, I suspect, it is over-rated. What is
essential is that frequently used subroutines are coded as well
as possible; the efficiency of the main program hardly matters.
It is vital that the correct method is used for solving the
problem, a point that is frequently overlooked by users who
only too often seem to believe that a high-speed computer
makes numerical methods unnecessary. In a university
environment, where most jobs live for only a few runs, the
really important factor is how quickly the compilation can
be achieved. Not that run-time efficiency can be totally
ignored! Excellent FORTRAN compilers meeting this type of
need have been produced by Purdue University (PUFFT)
and University of Waterloo (WATFOR). These were written
by very small groups closely in touch with their users and are
considerably faster (by an order of magnitude) than other
compilers for the same language available on their respective
machines. True, the language implementations are somewhat
restricted but not so as to inconvenience the large majority
of users. Run-time efficiencies are quite acceptable. Another
example, of rather earlier vintage, is Mercury Autocode.
Very fast ALGOL compilers have been rare. One of the fastest
was probably Whetstone ALGOL for the KDF9, whose run-
time inefficiency was a computer manager's nightmare.
Widespread acceptance of PL/I will surely depend, among
other things, on the production of suitably fast compilers so
that the language can be taught to large numbers of people.

It is relevant to remark that good diagnostics are most
important in an environment where so few of the users can
be classed as computer specialists. Such diagnostics must be
present at compile time and preferably also at execution time.
It is important that the run-time messages are made to refer
to the source program, not to the compiled object program.
This can be done; WATFOR certainly does it in great detail
and this is one of the features that makes it so attractive to

its users. All too often, though, the poor user is given a
cryptic message which is sometimes followed by a core dump
in octal or hexadecimal.

One feature of many modern systems is the ability they
give the user to write parts of his program in different
languages. There are occasions when this is a most valuable
facility. Most university users, however, are monoglots,
generally employing a restricted dialect of their chosen
language. To impose the general system ('link editing',
'consolidation', 'composing' are some of its aliases) on all
users causes a great waste of time. A system that can by-pass
these overheads for single-language programs is highly
desirable. To show what can be achieved in this direction,
such a by-pass has been written for UCL by one of the IBM
staff; whereas we previously had a minimum overhead of
25 seconds we now have a maximum overhead of 5 seconds.
To appreciate the significance of this, remember that Fig. 1
shows that almost 50 % of all jobs take less than 1 minute.

4.2. Operating systems
The principal requirement must be rapid and fully auto-

matic job-to-job transition. For many of the programs that
will be involved, any operator intervention, such as having to
type initiation or termination messages, will take longer than
the job itself. Even for the automatic systems it is essential
that the overheads are kept down to the minimum. An inter-
job time of, say, 5 seconds is negligible for jobs taking
30 minutes but is too much if an average job is processed in
30 seconds or less. There are very few manufacturers'
systems that achieve such a low figure. Presumably this is
because a general purpose operating system has always to be
ready for anything. The WATFOR and PUFFT systems,
mentioned earlier, achieve a very high throughput rate by
organising their own job-to-job transition, taking milli-
seconds, rather than going back to the machine's operating
system and incurring overheads of several seconds. They are
able to do this because they are geared to a particular type
of environment and only look for a restricted number of
possible events. Again, using the UCL machine as an
example, the test suggested earlier of 30 'zero-length' pro-
grams took 7 • 69 seconds as a WATFOR batch and this time
included 6-47 seconds for loading the compiler initially. For
comparison with the standard system, the total time for these
30 programs was 18 minutes 35 seconds using the system's
link editor, and 10 minutes 43 seconds with the special fast
link editor-loader.

The user's access to the machine is dominated by the control
parameters that have to be supplied. Most of our users have
standard requests from the system and so there is considerable
advantage in providing a system that requires the minimum
of information to be supplied by the user. In practice, this
means very few control cards or characters. The minimum
is two cards, one to identify the user and one to signify the
end of his program, and so by implication the start of his
data. Large packs of control cards may be in order for the
professional programmer, although I would doubt it, but
only act as a barrier for the average university user.

For most of the users in a university the immediate require-
ment is an execution run following straight on the compila-
tion. Compilers therefore have to be of the 'load and go'
variety, again without operator intervention between the
separate stages. With the numbers of programs that will be
involved we cannot afford, as a management problem, a
system that requires program and data to be split, to be

238

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/236/378783 by guest on 13 M
arch 2024

Discussion and Correspondence

matched again at a later stage. It is already enough of a
headache to join input and output, without adding further
complications. A consequence is that any unwanted data,
e.g. that belonging to a program that has failed to compile,
must be automatically ignored. This is, of course, essential
anyway in any system that has automatic buffering of input
and output. For the machine operators cards certainly have
an operating advantage here over paper tape, in that several
programs and their associated data can be placed in a card
reader but not in a paper tape device.

Other requirements, which one would think were obvious
were it not for the fact that systems are supplied without the
facilities for meeting them, are the automatic identification of
output, automatic marking of the end of a job on the printed
output and starting a new page for the next program, and
giving the user—and the installation management—a note of
the time used for this run.

4.3. Batch systems and multi-access
Most important of all, however, is a system that allows

very fast turn-round, say 2-3 hours at most and preferably
much less, for most jobs. This is the area where multi-access
systems have so much to offer, quite apart from any advantage
that accrues from direct interaction with one's program (to
my mind, an unnecessary facility in relation to most users'
needs). However, even the despised batch systems can be
made to run so as to give this very quick turn round. A very
successful one, organised with several card-reader/printer
data links, is the Case Institute System, working on a Univac
1107. Another, with rather more conventional hardware, is
operated at the University of Waterloo where the turn-round
for the short type of job that can be run with their own
WATFOR compiler is less than 10 minutes. In most British
universities, users with this type of program would be regarded
as especially favoured if they get two turn-rounds per day.
A decided gain from the hardware of the new generation of
machines is the ability to have an input/output well on a
disk or a drum (although first pioneered on Atlas with
magnetic tape), instead of the physically recognisable batch
of the 7090/1401 style that is generally used on tape-oriented
machines. In particular, such a well can be organised to
work with a priority system, so that the very short jobs can
be moved forward in the queue, both for execution and out-
put. It is impossible to do this economically on a sequential
medium like magnetic tape. (Atlas gets away with it by
multiprogramming, so that tape movement time can be used
by another program.)

The prospect of multi-access systems is most important for
universities. To be really useful we shall need machines with
several hundred terminals active at any one time, not the
penny numbers that are available at present. This appears
to be a long way off, but need it be so? For most of our
users what is required is the facility of a sophisticated cal-
culating machine, without necessarily having access to a large
and elaborate personal filing system, with password pro-
tection, etc. This restricted system should not be so difficult
to implement, even if it is not as elegant and glamorous as
the full-scale 'computer utility' concept. In fact, considering
the current difficulties of several manufacturers over just this
point, it might be a good idea to make the simplified system
work first.

For the user, the multi-access system offers an entry to the
machine without going through a central job-reception
organisation, and gives hope for rapid turn-round. There is

also an incidental advantage for the installation management
in such a system, that there is no longer the need to tear up
vast quantities of paper and then match them with the input
documents. I would go further, and suggest that we look
very carefully at what type of terminal equipment should be
provided. Very many of the program runs, as we have seen,
will be development. This means that on most occasions a
program will differ only slightly from the previous version.
The user's first action, more often than not, is simply to see
whether there are any diagnostics, indicating that his program
has failed. If so, he is only interested in the mistakes that
he has made and has no further use for any remaining output.
Why should he be burdened with it ? It seems to me that a
useful system would be one that allows short-term storage of
files (program or data), provides editing facilities and an
inspection system. Suitable hardware for the implementation
of such software appears to be disks and CRT display
consoles. Hard copy might be a problem, but could pre-
sumably be requested from the central system's printer. (I
have also heard a suggestion that a Polaroid camera could
be used to good effect.)

4.4. Program libraries
I have said that many of the programs that are written are

individual to the student, pertaining to some particular
problem in his work. Nevertheless, there are several standard
processes that are required: for example, in the analysis of
laboratory experiments a common need is for least squares
curve fitting. The value of the computer as a teaching and
research aid is considerably enhanced if there is a good
library of easily accessible programs or algorithms. By this
means the student can concentrate on what is important for
his work, namely the interpretation of his results, rather than
waste his time in removing stupid mistakes. He must learn
to use complete programs just like other pieces of laboratory
apparatus. It is debatable to what extent the selection and
provision of such a library is the duty of the manufacturer.
What must be the responsibility of the manufacturer is an
organisation that allows such programs and subroutines to
be called into use with the minimum of effort. If there is a
system subroutine library, it must be possible to add to it in
a reasonably simple manner, and similarly it must be possible
to extend the library of complete programs that are available.
I have known some systems where the library editing facilities
were so complicated that their use required a major intel-
lectual effort by highly skilled programmers to do even the
simplest things.

Such system libraries will have to be implemented for
batch-type and also for multi-access systems. My earlier
remarks that few users would require access to large files
refer to user-created files, not to system files.

5. Remarks on language and hardware compatibility
I have concentrated almost entirely on the type of work

that is generated by students and research workers, but
excluded the very large, continuing type of program.
Although the emphasis has been on students, it is important
to realise that much of the work done by university staff also
has this 'short job' character, but is more durable.

One characteristic of university staff is their mobility.
People move to other posts, they spend some time working
in universities in other countries. Unlike people in all other
types of employment, university staff take their work with
them when they change their post. It is a source of con-

239

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/236/378783 by guest on 13 M
arch 2024

Discussion and Correspondence

siderable annoyance to find that much of one's previous
programming effort is of no further use, because the original
programming language is not implemented at the new
university or that the implementation, although allegedly of
the same language, differs in important aspects. The same
problem exists if a university has more than one computer
available to its staff, or if it replaces a machine. Can we do
no more than shrug our shoulders and say 'Well, that's life' ?
I would claim that agreed language standards are of the
utmost importance to university users. By the same token,
purely local languages—the provision of which seems to be
a favourite university pastime—should not be used as the
main working language of a university computing centre.

Just as important as the language compatibility is a certain
amount of hardware compatibility. There is considerable
interchange of programs and experimental data between
workers at different universities. This makes it important
for us to have ways of passing this information in machine
readable form. Often this means compatible magnetic tapes
but it also shows the need for compatible input/output
equipment. The present jungle of mutually incompatible
codes for cards and paper tape is to no-one's advantage and
is totally unnecessary. It is also extremely costly, as new

data preparation equipment may be needed when a university
brings another machine into operation. For example, London
University currently has Atlas, IBM 7094, IBM 360 and
I.C.T. 1905 computers in operation, and will shortly add a
CDC 6600. Four incompatible card codes will be in use,
including three of the new 64-character sets. As all of these
machines are available to users within the university there is
considerable waste in having equipment that cannot punch
cards for all the machines.

6. Concluding comments
I have tried to outline the characteristics of the computing

load in a typical university and what software is needed to
cope with them. In my opinion, manufacturers do not at
present fill this need and so it is left to universities to write
much of their own software. I suggest, however, that it is
the manufacturers' own interest to look carefully at what the
universities want. It is at college that young men and
women get their first real introduction to computers. The
impression they carry away with them from college can be
most important in later years, when they are in a position to
influence the installation of machines.

References
IRONS, E. T. (1965). A rapid turnaround multiprogramming system, Comm. ACM, Vol. 8, p. 152.
LYNCH, W. C. (1966). Description of a high capacity, fast turnaround university computing centre, Comm. ACM, Vol. 9, p. 117.
ROSEN, S., SPURGEON, R. A., DONNELLY, J. K. (1965). PUFFT—The Purdue University Fast FORTRAN Translator, Comm. ACM,

Vol. 8, p. 661.
SHANTZ, P. W., GERMAN, R. A., MITCHELL, J. G., SHIRLEY, R. S. K., ZARNKE, C. R. (1967). WATFOR—The University of

Waterloo FORTRAN IV Compiler, Comm. ACM, Vol. 10, p. 41. (This describes an earlier version of the compiler, not that
for the System/360.)

Correspondence

To the Editor
The Computer Journal

Some computational notes on the shortest route problem
Sir,
There is a minor mistake in the procedures in the paper by
Aarni Perko, published in the April 1965 issue of this Journal.

With regard to Bellman's optimisation principle, the
iterative application of the procedures at each step gives an
optimal solution for the nodes already considered. In
general, in each iterative cycle the length of the route to a
node i is calculated in an optimal way. If, however, the
network contains isolated nodes, i.e. nodes which are not
attainable from any other node, it can then be the case that
after some iterations no nodes will be assigned to the array p.
Considering this, the last two instructions with the data of
the preceding iterative cycle will be executed wrongly.

In both procedures the lines

d[jm\ := x;p[jm] := im;

should be replaced by
if x < 99 999 999 then
begin d[jm] := x; p\Jm\ := im;
end;

Provided that the arrays p and d are declared from 0 — n
instead of 1 — n, the additional instruction

jm := 0;
is sufficient.

As far as the computational refinement is concerned, it is
useful as well to introduce an auxiliary variable for
loc [/ + 1] — 1 in the for clause.

Yours faithfully,
UWE PAPE

334 Wolfenbuttel,
Fontaneweg 4,
Germany.
3 February 1968

{Further correspondence appears on pp. 172 and 194)

240

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/236/378783 by guest on 13 M
arch 2024

