
Discussion and Correspondence

siderable annoyance to find that much of one's previous
programming effort is of no further use, because the original
programming language is not implemented at the new
university or that the implementation, although allegedly of
the same language, differs in important aspects. The same
problem exists if a university has more than one computer
available to its staff, or if it replaces a machine. Can we do
no more than shrug our shoulders and say 'Well, that's life' ?
I would claim that agreed language standards are of the
utmost importance to university users. By the same token,
purely local languages—the provision of which seems to be
a favourite university pastime—should not be used as the
main working language of a university computing centre.

Just as important as the language compatibility is a certain
amount of hardware compatibility. There is considerable
interchange of programs and experimental data between
workers at different universities. This makes it important
for us to have ways of passing this information in machine
readable form. Often this means compatible magnetic tapes
but it also shows the need for compatible input/output
equipment. The present jungle of mutually incompatible
codes for cards and paper tape is to no-one's advantage and
is totally unnecessary. It is also extremely costly, as new

data preparation equipment may be needed when a university
brings another machine into operation. For example, London
University currently has Atlas, IBM 7094, IBM 360 and
I.C.T. 1905 computers in operation, and will shortly add a
CDC 6600. Four incompatible card codes will be in use,
including three of the new 64-character sets. As all of these
machines are available to users within the university there is
considerable waste in having equipment that cannot punch
cards for all the machines.

6. Concluding comments
I have tried to outline the characteristics of the computing

load in a typical university and what software is needed to
cope with them. In my opinion, manufacturers do not at
present fill this need and so it is left to universities to write
much of their own software. I suggest, however, that it is
the manufacturers' own interest to look carefully at what the
universities want. It is at college that young men and
women get their first real introduction to computers. The
impression they carry away with them from college can be
most important in later years, when they are in a position to
influence the installation of machines.

References
IRONS, E. T. (1965). A rapid turnaround multiprogramming system, Comm. ACM, Vol. 8, p. 152.
LYNCH, W. C. (1966). Description of a high capacity, fast turnaround university computing centre, Comm. ACM, Vol. 9, p. 117.
ROSEN, S., SPURGEON, R. A., DONNELLY, J. K. (1965). PUFFT—The Purdue University Fast FORTRAN Translator, Comm. ACM,

Vol. 8, p. 661.
SHANTZ, P. W., GERMAN, R. A., MITCHELL, J. G., SHIRLEY, R. S. K., ZARNKE, C. R. (1967). WATFOR—The University of

Waterloo FORTRAN IV Compiler, Comm. ACM, Vol. 10, p. 41. (This describes an earlier version of the compiler, not that
for the System/360.)

Correspondence

To the Editor
The Computer Journal

Some computational notes on the shortest route problem
Sir,
There is a minor mistake in the procedures in the paper by
Aarni Perko, published in the April 1965 issue of this Journal.

With regard to Bellman's optimisation principle, the
iterative application of the procedures at each step gives an
optimal solution for the nodes already considered. In
general, in each iterative cycle the length of the route to a
node i is calculated in an optimal way. If, however, the
network contains isolated nodes, i.e. nodes which are not
attainable from any other node, it can then be the case that
after some iterations no nodes will be assigned to the array p.
Considering this, the last two instructions with the data of
the preceding iterative cycle will be executed wrongly.

In both procedures the lines

d[jm\ := x;p[jm] := im;

should be replaced by
if x < 99 999 999 then
begin d[jm] := x; p\Jm\ := im;
end;

Provided that the arrays p and d are declared from 0 — n
instead of 1 — n, the additional instruction

jm := 0;
is sufficient.

As far as the computational refinement is concerned, it is
useful as well to introduce an auxiliary variable for
loc [/ + 1 ] — 1 in the for clause.

Yours faithfully,
UWE PAPE

334 Wolfenbuttel,
Fontaneweg 4,
Germany.
3 February 1968

{Further correspondence appears on pp. 172 and 194)

240

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/11/2/240/378792 by guest on 19 April 2024


