The structure of a multiprogramming supervisor

By D. F. Hartley, B. Landy and R. M. Needham*

The paper discusses the basic logic of the supervisor which has been developed for the Titan

computer at the Mathematical Laboratory, Cambridge University.

The emphasis is on the

underlying principles rather than the operating system as seen by the user.

(Received June 1968)

The supervisor in operation on the Titan (prototype
Atlas 2) computer at Cambridge University provides a
combined jobshop and multiple-access service. Work
may be presented to the system either in the conventional
manner or from a console. A user may make use of
different modes of access at different stages of his work,
and at all times he has available a disc-based filing
system with magnetic-tape backup.

In this paper we are concerned with the underlying
mechanism of the system, in particular with the means
for activating and de-activating processes, the ways in
which processes interact, the handing to and fro of work
space, and the general multi-programming organisation.
No attempt will be made to explain in detail the function
of the various processes that this mechanism controls,
or to describe how the system looks to the user. The
same underlying mechanism could be used to support a
variety of operating systems with user characteristics
differing markedly from those of the Cambridge system.
One such system is in operation at the present time, and
will be referred to later in the paper.

A few facts about the Titan computer are required
for the purposes of the present paper. The computer
has three sequence control counters (program counters)
called main control, extracode control, and interrupt
control, respectively. Main control is used for user level
programs, and interrupt control for the immediate pro-
cessing of interrupts; when the computer is on interrupt
control, further interrupts are held off automatically by
hardware. When the computer is on extracode control,
certain storage access privileges, which are debarred
when on main control, are available; interrupts are
allowed. Extracode control is used for the bulk of the
supervisor, and for certain functions available to user
programs. Such programs may call for one of these
functions by executing an extracode instruction, which
causes control to go to one of 512 entry points which
are fixed and protected, at the same time switching the
computer from main control to extracode control. The
computer is provided with storage protection and relo-
cation hardware; these features are briefly described
where needed in the exposition. Peripheral control is
almost entirely performed by interrupts, control bits and
data being associated with specially addressed registers.

Routines and processes

In describing any system that makes use of multi-
programming, it is necessary to distinguish between
routines, which are blocks of code, and processes. At
any time, there may be a number of processes that are
free to run. There may be other processes that are
halted waiting for response from a peripheral device or
for some other reason. The same routine may form
part of a number of processes, some of which are halted
in that routine and some of which are free to run in it.
One sometimes speaks of a routine as being halted,
although, in fact, it is the process using the routine that
is halted.

Types of routine

There are three types of routine with which we are
concerned. Object programs are entirely unprivileged
and are of no urgency as far as the system is concerned.
They run on main control, except when they are using
extracode functions when they run on extracode control.
Interrupt routines arise from hardware interrupts and
are dealt with immediately; since they are themselves
non-interruptable, they must be short. Interrupt
routines run on interrupt control. Supervisor routines
run on extracode control, except when they need to
protect themselves from interruption; in these circum-
stances, they can run for brief periods on interrupt
control. Supervisor routines make use of a number of
central routines in the supervisor for such purposes as
the acquisition and relinquishing of storage space.

Coordinator

As its name implies, the coordinator directs and con-
trols the whole functioning of the supervisor, including
the idling that takes place when there are no jobs to be
run. The coordinator is entered whenever an object
program has occasion to request supervisor activity, or
when such activity must be temporarily suspended in
order that another activity may take place. It can also
be entered from an interrupt routine. If the call to the
coordinator is from an object program or from an
interrupt routine that has interrupted an object program,

* University Mathematical Laboratory, Corn Exchange Street, Cambridge.

247

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

the coordinator initiates the requested activity imme-
diately. Otherwise, the coordinator places a request
for the activity to take place on a queue in a manner
described below; that is, entry to the supervisor is
queued rather than nested.

Bases

When an activity is said to be queued, the object that
is actually put on the queue is a base. This is a conse-
cutive sequence of 2 to 32 memory registers, located in a
fixed region of core set aside for the purpose. It is
referred to by the address of its first element relative to
the beginning of the region.

A base contains:

(@) One half-word used for chaining the base to a
queue.

(b) An entry address for the routine that will perform
the activity with which the base is associated.
Provision is made for this address to be set when
the base is queued. If the routine is halted, the
entry address is set to the point at which execution
is ultimately to be resumed.

(¢) Queuing data. This includes the priority of the
process, whether the routine associated with it is
resident in core and, if not, whereabouts it is to
be found.

(d) Some registers, varying in number from base to
base, for dumping index registers when the
activity is halted.

Some bases also contain:

(e) A small amount of working space for the process.
(f) One or more words used for associating data held
in core with the base. The data are stored in
chains with backward and forward pointers. This
method of storage enables the data to be moved
freely about in core when necessary.

An extra half-word for chaining the base on to a
second queue (see below under OP bases).

It will be seen that a base is linked both to a
routine and to the data that will be used by the
routine when it is activated. Together, the routine
and the data define a process. A number of bases
may be linked to the same routine, but each will
be linked to different sets of data. For example,
there is one base associated with each paper-tape
reader; these bases are linked to the same routine
but to different data areas. Processes associated
with bases are referred to as SERs. The historical
derivation of this name will not be given since it
would confuse the reader.

(2

Bases are of two kinds:

(1) Those permanently associated with activities that
are able to run as independent processes. Examples
are the KILL JOB SER and the 1 SECOND SER.

(2) Those assigned to object programs. These are
referred to as OP bases and there is one for each
object program in execution. OP bases are asso-

248

ciated as required with supervisor routines that
perform activities (for example, changing phase
or opening a stream) that may be requested by
object programs. In addition to data space needed
by the associated routine, OP bases also have some
space chained to them for holding information
relating to the object program.

When an object program is not running its
processor status (including the main control
counter, which gives the re-starting address) may
be stored here.

An SER is either halted, free to run, or dormant. It
may be halted at its own request, or it may be halted in a
central routine that it is currently executing. A common
case of an SER being halted in a central routine is when
an SER has called on a space routine to provide storage
space for an object program and the storage space is not
available. When halting is necessary, the coordinator
is entered with a statement of the halt reason and (usually)
with the address at which execution of the SER is ulti-
mately to be resumed. The coordinator places the base
on the appropriate halt queue and writes the resumption
address into the base.

SERs that are halted are chained together on a halt
queue; there are many halt queues corresponding to the
different halt reasons. Whenever a halt condition
clears, the coordinator is asked either (1) to transfer
all the bases from the corresponding halt queue to the
free queue, or (2) to put the first base from the halt
queue on to the free queue, or (3) to put a specified base
from the halt queue on to the free queue. These requests
to the coordinator are always made by an SER. Often
the SER that makes the call is the one that has cleared
the halt condition. When the halt condition is cleared
by an interrupt, the request is made by an SER called by
the corresponding interrupt routine.

SERs that are free to run are chained to the free queue.
For efficiency reasons, this queue is implemented as three
separate queues connected head to tail. When an
SER is queued, it is placed at the bottom of the appro-
priate sub-queue according to its priority. An excep-
tion is the RETRIEVER (referred to below) that is
always treated as having lower priority than any other
SER. An SER which is dormant is on no queue at all.

It would have been very convenient if the design of the
supervisor had been such that halted SERs could be
released for any one of several reasons instead of for
one reason only. An example would be to release an
SER either when a console user types a carriage return or
when a certain time is expired. In the present implemen-
tation, requirements of this kind must be met by indirect
means.

Central subroutines typically have two entry points.
In one case, the SER calling them is halted if it makes a
request that cannot be met (for example, in the case of
a space routine, if no space is available). If a subroutine
is entered at the other entry point, the process is not
halted if the request cannot be met, but the subroutine
returns control and reports the reason.

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

In addition to the chains corresponding to the free
and halt queues, there is an additional chain running
through all object program bases. An object program
is either:

(1) Halted in an SER, in which case the SER will be
on the corresponding halt queue.

(2) Running.

(3) Free to run but interrupted. In this case (unless
it was the last object program to run) its processor
status will be recorded in registers chained to
the base.

When the coordinator searches the OP chain to find
an object program free to run, it examines the marker
in each base that indicates whether the object program
corresponding to that base is halted or not. It will pass
control to the first object program it finds which is not
halted, after restoring its processor status if need be.

Space allocation

Atlas 2 is provided with base and limit registers for
storage lockout; the base registers act as relocation
registers. However, the content of a base register is
not added to the address in the instruction, but instead
the logical OR of the content of the base register and the
address is formed. This imposes an awkward restriction
on where program or data segments may start when they
are loaded into memory. A segment of n words can
only start at an address of the form 2™, where m is such
that 2» > n. This together with the fact that a section
of core within the limits defined by the base and limit
registers can be separately locked out, led to the adoption
of an unusual method of utilising storage space.

Since object programs can only start at certain addres-
ses, there is inevitably space left over when the object
programs selected for loading have been fitted into
memory. This space is utilised on a temporary basis
for buffering and for holding sections of the supervisor—
known as chapters—that are not permanently resident
in core (see below). Similar use is made of space that
has been allocated to a program but not yet used. In
each case the space occupied is held on sufferance and
must be yielded up if it is required by an object program.
The responsibility for freeing space that has been tem-
porarily occupied in this way, and is now required by an
object program, lies with the space routines of the super-
visor. They free space either by moving information
from it to some other part of the memory that may be
free, or by authorising its overwriting.

Object programs once loaded are never shifted to
another part of core, a procedure that might be adopted
in a computer provided with a genuine additive base
register and efficient hardware instructions for moving
material. Again, the supervisor in its present form has
no provision for swapping (there being no drum) and
it is for this reason that fully conversational working
is expensive on the Atlas 2.

The core memory is divided into two parts. The

249

fixed area of about 15K holds permanently resident code
and provides some working space. The space routine
domain is available for object programs, unused space
between them being used in the manner described above
for bufferage and for chapters of the supervisor that are
not permanently resident. It is found convenient in a
64K configuration to allocate 84K of this space specially
for pure procedures and to leave 4K permanently avail-
able to provide some elbow room for the supervisor in
times of storage congestion. These figures are different
in a 128K configuration. (All store figures refer to
words of 48 bits.)

There are about 32K words, including code asso-
ciated with SERs and system routines, and tables,
in the supervisor altogether, all but about 15K being
non-resident. The system initialises itself with all the
supervisor in core; as the core fills up with object pro-
grams, more and more of the supervisor becomes non-
resident. It is found that operation becomes very
inefficient if there is only room in core for two or three
of the normally non-resident chapters of the supervisor,
since furious and almost cyclic retrieving then tends
to occur.

A distinction was made above between storage space
being allocated to a program and actually being used
by that program. This distinction is built into the
implementation. The master space scheduler allocates
space to an object program when that program asks for
it. This, however, is a pure book-keeping transaction,
and no corresponding adjustment is made to the storage
lockout settings. In consequence, when the object
program tries to access the space that it has been given,
a memory fault occurs. It is as a result of this fault that
the space routines, which are responsible for disposing
of information temporarily in occupation and giving the
space to the object program, are called into action.
Experience has shown that this method of scheduling
enables extremely economical use to be made of the
available core space.

Space routines

The largest unit in which space other than that actually
containing user programs is handled is the block of
512 words. It is in terms of (consecutive) blocks that
space is allocated to object programs. A supervisor
chapter also occupies one block. Blocklets consist of
64 words; they are typically chained together to provide
buffering space, and are made by splitting up blocks.

At any time, the space routine domain is made up of:

(1) Space physically containing object programs (that
is, not merely allocated to object programs by the
master space scheduler).

(2) Space containing supervisor chapters.

(3) Space containing blocklets. In addition:

(4) There may be space that is unoccupied. There
are two chains of unoccupied space, the gap chain,
containing free blocks, and the free blocklet chain,
containing free blocklets.

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

A request made by an SER to the space routines may
be for the delivery of any one of the following:

(1) A particular block required by an object program
(for example, for growing within the allocation
made by the master space scheduler).

(2) Any block to receive a chapter of the supervisor.
(3) A blocklet.

Similarly, a request can be made for space to be taken
back. The drasticness, or otherwise, of the action taken
to free space with which to satisfy the demand is deter-

mined by a priority system, as described below. Such
action can be:

For (1) above:

If the block is on the gap chain, deliver it.

If the block contains a chapter, shift or overwrite
the chapter.

If the block contains blocklets, not on the free chain,
shift them, or authorise their overwriting provided
a copy exists on the disc.

For (2) above:

If there is a block on the gap chain, deliver it.
Overwrite a chapter.

Try shifting blocklets to free a block.

If necessary, overwrite some blocklets.

For (3) above:

If there is a blocklet on the free blocklet chain,
deliver it.

Authorise the overwriting of a blocklet of which a
copy exists on the disc.

If necessary, cut up a block to make more blocklets.

If none of these things are possible, or desirable, the
space routine either halts the requesting SER or returns
witha FAIL indication ; which of these two things happens
depends on the manner in which the space routine has
been entered.

Associated with the space routines is a garbage collec-
tion routine that combines blocklets into complete
blocks when necessary.

Requesting and keeping priorities

Three distinct priority numbers are associated with
chapters of the supervisor that are not permanently
resident. These are:

Requesting priority, that applies when space is being
requested for a chapter; live keeping priority, which is
associated with a chapter currently resident in core and
actively in use by one or more SERs; dead keeping
priority, associated with a currently resident chapter
that is not in use, i.e. all the SERs using its code are
dormant. It is by comparing the requesting priority of a
chapter whose loading has been requested by an SER
with the appropriate keeping priority of chapters already
in core that the space routines determine—when the gap
chain is empty—whether a given chapter is to be over-
written or not. The dead keeping priority is fairly

250

high for the chapter containing the line printer transla-
tion table, for example, and low for the chapter contain-
ing the 1 MINUTE SER that is, as its name implies,
activated only once a minute. The priority numbers
adopted for use were arrived at by accumulating statistics
of actual operation. Loading of requested chapters
is performed by an SER known as the RETRIEVER,
which as explained earlier, has lower priority than any
other SER on the free queue.

Blocklets also have requesting and keeping priorities,
but not dead keeping priorities. The keeping priority
can be made effectively infinite, in which case the blocklet
remains in core until the priority is altered or the blocklet
is relinquished; such a blocklet is said to be tied. This is
done, for example, with blocklets containing data from
a paper tape reader that are waiting to go to the disc.

PQ bases

PQ bases (the origin of this strange name is not worth
explaining) are short sequences of consecutive words
used for recording information needed by the supervisor.
They are constructed out of tied blocklets; an individual
PQ base lies wholly within a blocklet, but the same block-
let, can contain several PQ bases. Thus while a PQ
base is typically 6 to 8 words long, it can go up to 60
words. The issuing and return of PQ bases is handled
by a sub-system that makes use of the space routines for
the purpose of obtaining blocklets. The addressing
system used to implement PQ bases limits the amount of
space that may be used for this purpose to 64 blocklets;
this has proved an unfortunate limitation and shortage
of PQ bases sometimes leads to system delay.

It is worth-while giving one or two examples of the use
of PQ bases. Each input stream has a PQ base asso-
ciated with it; this contains a pointer to the current
blocklet being used as a buffer by that input stream and to
the current place in that blocklet. It also contains the
value of the current partially unpacked word and whether
the stream is exhausted or a not. Similarly, a PQ base
associated with a document in the well (see below)
contains the name of the document, a statement of how
long it is, the absolute address on the disc at which it
starts, the current record on the disc being accessed, and
whether the record is complete or not. PQ bases are
associated with output streams, and with magnetic
tapes; they are also used to contain job titles and operator
output or input messages in course of being processed.

The idling loop

It will be remembered that, in addition to the regular
chains (halt and free) through the bases, the coordinator
maintains a separate chain through the object program
bases. Whenever the coordinator can find no SER free
to run, it goes down this chain and starts the first OP
that is not halted (or, more strictly, is not trying to run
an SER that is halted). If no such OP can be found,
the coordinator queues and immediately enters the
IDLING SER.

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

Actions performed by the IDLING SER are as follows:

(1) The running of a simple arithmetic test routine
for the accumulator.

(2) Testing of a marker that is set when an SER is
queued in consequence of an interrupt. If this
happens, exit from the IDLING SER takes place
and, as is the case after exit from all SERs, control
goes to the coordinator. The chain of free SERs
will then be scanned, and the SER that has just
been queued will be entered.

(3) Keeping an account of the number of idling
cycles. Since normally the idling loop is interrup-
ted at least once a second by the timed interrupt
calling for the 1 SECOND SER, if this count
exceeds a certain quantity it is an indication that
the clock has stopped.

Object program selection

An object program once started will run (1) to com-
pletion, (2) until it is halted (in an SER), or (3) until an
interrupt takes place. The interrupt may be a simple
one involving no call to an SER and soon over. It may,
however, call an SER and, since this call takes place
during the running of an object program, the SER is
executed immediately; it may, during its running, free
or queue other SERs. Like all SERs when it terminates
it sends control to the coordinator which, after running
all SERs that are now free, will again turn its attention
to the chain of OPs that are ready to run. Since the
activity that has taken place could very well have the
effect of freeing an object program higher on the queue
than the one that was interrupted, a change of object
program may, therefore, occur at this point; if so, the
processor status for the displaced object program is
dumped into the set of blocklets provided for this pur-
pose and chained to the OP base.

As an efficiency aid a flag is set when an object program
is freed as the result of an SER running, and the search
of the object program chain takes place only if this flag
has been set.

1 SECOND SER

At rather more than one second intervals(1 - 28 seconds
to be precise), a clock interrupt takes place and the
associated interrupt routine queues the 1 SECOND SER.
The principal functions of this SER, which has been
mentioned several times, will be summarised;
they are:

(1) To scan the peripherals to see if one has recently
become engaged, and if so to queue the appro-
priate SER.

(2) To give an alarm if an unreasonable time has
gone by without an expected interrupt having
come from a peripheral.

(3) To scan the chain of object programs and find
the one which has had the most processor time
since the last scan (this figure is recorded in the

251

OP base). The object program in question is
removed to the end of the chain.

(4) To look for messages prepared for typing to the
operators, and queue an SER if there are any.

(5) At proper intervals, to queue the 1 MINUTE SER.

Among the functions of the 1 MINUTE SER are:

(1) To subtract a constant from the priority rating of
all jobs on the abridged job list (see below).

(2) To remind operators of missing documents and to
abandon jobs if necessary.

(3) To put out the time on the operator’s typewriter.

(4) To initiate the logging of information.

Some longer interval timing is handled (conveniently
if not always logically) by the file organisation program,
which for reasons of its own is equipped with a mechan-
ism for initiating standard operations that are required
to be performed periodically such as incremental dump-
ing.

The well

The well is, in effect, a short-term filing system that
enables material to be stored away on the disc in the
form of a sequence of blocklets chained together. The
well routines also administer transfer of this material to
and from core. The well was originally designed to
hold documents in batches, and the terminology reflects
this intention; however, it was in practice found more
convenient to work with single documents and the words
‘batch’ and ‘document’ are to be taken as synonymous.

A batch (or document) is described by a batch record
which is accommodated in six words in a PQ base. In
the case of a stream associated with an object program,
the batch record consists of (1) the batch number, which
is a combination of the cipher of the job (see below) and
stream number, together with a digit indicating whether
the stream referred to is an input or an output stream,
(2) type and size of stream, and (3) the absolute address
on the disc of the record in which the first block of the
batch is stored.

The unit of allocation of space on the disc is the block,
but the well routine is capable of writing in smaller
units down to one blocklet, although to do so is relatively
inefficient. The well routines attempt to accumulate
material in core until there is a block full, but, if buffer
space gets short, they write on the disc the blocklets
that have been accumulated. Blocklets used for buffer-
ing are obtained from the space routines as required
and returned when they are finished with. Object
programs can create output at a great rate, faster
in fact than the disc can absorb it; it is therefore
arranged that an object program is halted if more
than 12 blocklets of a particular stream have accu-
mulated in the well buffer awaiting disc writing.

The well reading routines are designed so that they
will work under conditions of extreme shortage of core
space. When a document from the well is to be read
into core, the well routines try to procure up to four

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

groups of 8 blocklets each from the space routines. The
exact number requested in a particular case depends
on the rate of consumption if this can be estimated.
They ask for the groups of blocklets successively with
decreasing priority, entering the space routines in such
a way that they are not halted if space is not available.
They then read enough material to fill the blocklets
that have been obtained. When all but a few of the
blocklets have been used by the requesting program, the
reading procedure is repeated. It may be, however,
that material is read from the well and not immediately
consumed by the user; it may indeed never be consumed.
Blocklets in use for well bufferage are, therefore, regarded
as potentially available to the space routines if space
becomes short, and are allotted decreasing keeping
priorities corresponding to the decreasing requesting
priorities with which they were obtained. In order to
keep the core space situation as fluid as possible, the
well routine gives transfers out of core priority over
transfers into core.

The well routines can be used for dealing with mag-
netic tape, this, however, being a facility provided for
users and not for the system. They will also perform
such functions as turning an output stream into an input
stream, which they do by making the appropriate change
in the batch record. Note that the stream numbers are
in the batch records, and that there is no central list
of stream numbers.

It may be useful to describe the sequence of events
that take place when an input stream is created and
connected to a file. The object program executes an
extracode in which the file title and stream number are
parameters. The SER called by this extracode requests
access to the file from the file master; if all is in order,
the file master delivers the disc address and marks the
file as open for reading. The SER then makes up the
batch record and puts it in the pool of batch records.
When the stream is no longer required, the file master
is requested to close the file. In order that this should
be possible, the batch record contains a marker to show
that it refers to a stream connected to a file. Otherwise,
the batch record is identical to one for a stream that
came from a peripheral.

Scheduling and administration of object programs

The handling of objects programs has two sides, which
are here distinguished as administration and scheduling.
The former consists of operations which have to be
done by some means, but which, apart from the orders
obeyed in carrying them out, do not influence the overall
efficiency, or reflect a managerial policy. Under this
head come such things as checking that all peripheral
input is complete, ensuring that magnetic tapes are
mounted, arranging that all peripheral output is satis-
factorily completed, ensuring that the correct code
translations are performed and that input from per-
manent files is available. Scheduling on the other hand
involves managerial decisions, such as a decision to
favour short small jobs compared with big long ones.

252

We now follow the course of a job from the point at
which the paper tapes are inserted in the reader. It
should be clear which operations are scheduling and
which are administrative .

When a tape reader is engaged, this fact is detected
by the 1 SECOND SER. This in turn queues an SER
that starts the tape reader, gets the right translation
table from the disc, and demands a blocklet from the
space routines. Successive rows of tape are read until
a new line is encountered. The SER then sends control
to the NEWLINE subroutine that detects whether the
document in the tape reader is a job description, a titled
document, or an erroneously punched tape.

If the document is a job description, the NEWLINE
subroutine allocates a job cipher; if one is not available,
reading is halted. A cipher is a number from a pool,
re-used when available. It is used to identify the job
throughout its life in the machine. At the present time,
100 ciphers are used in a rotating sequence; 12 are
reserved for jobs created by the file master, and the rest
are used for regular jobs subject to some detailed restric-
tions on job type. The job description is checked for
error and packed into a convenient form. Two lists
are prepared; one, in the fixed area, contains the titles
of all documents needed by the job and the other, in a
PQ base, contains the names of magnetic tapes. When
all documents (as checked against the former list) have
been read the job is said to have arrived.

Abridged job list

This important list, held in a region of consecutive
memory, contains single word entries indexed by the
cipher. Each word contains information about the
current status of the job to which it refers. Immediately
after a job description has been read, the word indexed
by a particular cipher contains a count of the input
documents needed by the corresponding job; when all
the documents have come in, the word contains a marker
to the effect.

The entries in the abridged job list are chained in
four queues as follows:

queue 0 regular off-line jobs

queue 1 jobs created from a console by a RUNJOB
command or created by off-line jobs

queue 2 magnetic tape jobs (necessarily off-line
at present)

queue 3 console jobs, and jobs created by the file

master.

The operator can, by typewriter message, assign a
particular incoming job to any queue.

The allocation of a base

The first stage of scheduling is the allocation of a
base to the object program. Each job waiting for a
base is given a rating number which is arrived at as follows.
First a number is computed from the time estimate,
store size, and other parameters of the job. This num-

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

ber is multiplied by 10 for jobs on queue 0, by 6 for
jobs on queue 1, and by 3 for jobs on queue 2; it is left
unaltered for jobs on queue 3. Every minute, the
rating for each job not yet started is decreased by a
constant, this being one of the functions of the 1
MINUTE SER. Under all ordinary circumstances, the
priority ratings obtained in the above way have the effect
of giving high priority to jobs on queue 3. Individual
jobs may be given high priority by operator message.

A job which requires magnetic tapes to be mounted
is not given a base until its tapes are ready. The issuing
of directions to the operators for mounting tapes is a
function of the magnetic tape scheduler. This routine
has little scope for optimising, since jobs using the same
tapes must be run in the order in which they are put
into the machine in case the programmer is using the
tapes for communication between one job and following
jobs. The tape scheduler does, however, avoid issuing
futile requests such as asking for a tape to be removed
from one deck and immediately mounted on another.

A job, which is complete as far as peripheral input
and (where applicable) magnetic tapes are concerned,
is said to be ready. The first requirement for a job to be
able to proceed is that it should possess an OP base.
Whenever a base becomes available, it is assigned by
the job scheduler to the job with the lowest rating number,
subject to rules which are designed to balance the loads
of various types of job. A selection is first made of the
type of job to be started, and then the job of that type
with the lowest rating number is chosen. The rules
at present in use are as follows:

1. Reject from consideration off-line non-magnetic-
tape jobs if more than 3 such jobs are running.

2. Reject from consideration off-line, magnetic-tape
jobs if more than 6 off-line jobs of any sort are
running.

Then, subject to the job class not being rejected:

3. If there are less than 5 console jobs running, start
one if there is one.

4. If there are less than 3 off-line non-tape jobs run-
ning, start one if there is one available.

5. If there are less than 4 tape or off-line jobs running,
start one if there is one available.

6. Otherwise, start the job with the least rating num-
ber, if there is one whose class is not ruled out
by (1) and (2).

These rules are not claimed to be optimal, but they seem
to have had some success in load-balancing. They were
designed to take account of the following observations:

1. Unless there are enough off-line jobs multi-pro-
gramming with each other and with console jobs,
there will be idle time because of them all getting
held up at the same time on account of tape and disc
delays.

2. If there are too many off-line jobs multi-program-
ming with each other, overheads increase, and
on-line response is degraded.

253

3. Tape units are a scarce resource and once tapes for
a particular job have been mounted in is sensible
to favour that job.

4. It is very desirable to start console jobs without
delay, but one must keep enough off-line work
going to avoid idle time.

At the time of writing there are commonly 20 jobs of all
sorts multi-programming at a time.

The base assigned to an object program stays with it
throughout its existence until the job finally goes through
the end program sequence. Assigning a base is a distinct
matter from giving the job core space to use, since the
amount of core space required may vary widely during
the process of the work. From the point of view of
space scheduling, a job goes through a series of phases.
The characteristic of a phase change is that the master
space scheduler makes a new allocation of core space.
For example, a job might successively go through an
editing, a compiling, and a loading phase; the core
allocation for each of these phases would be quite
independent of the others. Note that there is, in con-
sequence, no compulsion on the system to run one
phase of a job immediately the previous one has finished ;
the job in its new phase can go into the queue for space.
Thus, if one job is running for a long time in a phase
that needs a large amount of core space, so that there
is, for example, only 8K left, a large number of jobs may
go through a compiling phase using the Autocode com-
piler which needs only 63K, although none of the com-
piled programs can be loaded until the large job has run
to completion.

When a job has acquired a base, and its entry in
the abridged job list has been marked accordingly, the
job scheduler queues the (free standing) START OP
SER on its behalf. In due course, this SER will pick
up information from the job description, set up the input
and output streams (opening such files as are necessary)
and queue the PHASE CHANGE routine on the OP
base belonging to the job in question.

The PHASE CHANGE routine, as its name implies,
is activated, not only when a job is initiated, but when-
ever it changes from one phase to another. The phase
change routine first returns to the space routines any
core space that the job may possess. It then requests
space for the new phase from the master space scheduler;
the object program is placed on a space wait chain, and
halted until the space is allocated. When space becomes
available, the master space scheduler runs down the
space wait chain, and selects the first job that is waiting
for space and will fit into the space available. Space is
allocated to object programs in multiples of 4K words.
Each object program on the space wait chain has asso-
ciated with it a number called the skip count, which is
reduced by 1 each time the job is passed over by the
master space scheduler when it is seeking a job to go in
the available space. The initial value of the skip count
depends on the priority of the job, and on the amount
of space needed. In order that a large job shall not be

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

indefinitely delayed, a job whose skip count has become
zero is not passed over; instead, the master space
scheduler is halted. In due course, enough space will
necessarily become free to fit in the waiting job, and
normal operation will be resumed.

It is now possible to summarise the basis on which
the allocation of central processor time between the
various object programs in core is done. It has been
explained that the coordinator maintains a chain through
the OP bases, and is so constructed as always to run the
highest non-halted OP on the chain. It was also ex-
plained that one of the functions of the ONE SECOND
SER is to demote to the end of the chain the object
program which has received most central processor time
during the second just expired. The joint application
of these two rules constitutes nearly all the multipro-
gramming scheduling that is found to be needed. It
ensures that console jobs, which are frequently in input
or output wait, are near the head of the queue, and that
tape-limited or disc-limited jobs are favoured in a similar
way. If all the jobs in hand are processor limited,
then the result is a round robin, and no special priority
is given to console jobs; this does not happen often
enough to be worth worrying about.

There is one departure—in favour of the file organisa-
tion program, or file master—f{rom the strict application
of the above rules that is worth mentioning. The file
master, which it is outside the scope of this paper to
describe, runs as an object program in its own right,
with its own base and cipher. Since the file master
can, by its nature, never run for a very long period,
and since many other programs may be waiting for
access to files, it is found desirable to keep the file master
always at the head of the queue regardless of anything
that may happen in exceptional cases.

Re-starting after system failure

One blocklet per cipher is reserved on the disc for
the purpose of holding restart information. When
the status of a job changes (from the point of view of
restart) this blocklet must be updated. The information
held in the restart blocklet is sufficient to enable all
jobs that had not been run, or had not finished running,
and all output from jobs that had run to completion to
be recovered.

In order to make a restart possible, certain information
is preserved during running, when it would otherwise
be abandoned; for example, an input stream that
originally came from a peripheral, and has been thrown
away by a program, is, in fact, kept intact on the disc
until the job is completed.

General comments

The reader may wonder why it is necessary to treat
SERs and object programs differently in the matter of
scheduling, and why they should run on a different
control. The reasons, of which there are a number,

254

all derive from the fact that much more knowledge is
available about SERs than about object programs. It
is known that SERs will do their job quickly, or at any
rate will come to a halt quickly. Accordingly, there is
no danger of making nonsense of object program sche-
duling if they are allowed to take precedence. Again,
it can be assumed that SERs are fully debugged (!), and
there is, therefore, no need to protect the system by
setting the memory protection registers before they are
called in. Whenever an object program is changed,
the status of the processor, including contents of all
index registers (of which there are many in the Atlas 2),
must be saved; in the case of an SER, these operations
can be curtailed or omitted, since the actions to be
performed by the SER are known in advance; on the
Atlas 2, the saving in supervisor overheads made in these
ways is substantial.

It will be seen that the reasons just quoted for treating
SERs and object programs differently are partly funda-
mental and partly arise from constraints imposed by
the hardware. It is likely that, when computers designed
specially for time sharing are available, the latter will
be far less serious. The fundamental reasons will,
however, still carry sufficient weight for a distinction
between SERs and object programs to be highly desirable
in the interests of efficiency. We may remark in this
context that the Cambridge machine spends some 139
of its time in the supervisor, less than 19 in the idling
loop and thus over 859 obeying user-level programs.
This measurement relates to a period when 16 remote
terminals were being supported at a time, together with
an off-line throughput of 800-1000 jobs per day.

A supervisor based on an organisation very similar
to that described in this paper is used on the I.C.T.
Atlas 2 at AWRE Aldermaston, the original development
work having teen done by a joint I.C.T. and Cambridge
University group. The basic organisation of SERs,
chapters, blocklets, etc., and the coordinator, are only
trivially different if at all. From the point of view of the
user, however, the two operating systems are totally
different. The AWRE machine runs without multi-
programming of object programs, with a well on tapes
instead of on a disc, and has no provision for multiple
access. This is the software configuration desirable
for the kind of work customary at that installation.

Acknowledgements

The work reported here is the work of a team, which
in its first period included a number of people from
I.C.T. Ltd., principally C. R. Spooner, T. P. Wansbrough,
P. M. Brenan, and R. A. Jennings. From the Cambridge
side in addition to the authors, D. W. Barron was involved
in the early planning and M. J. T. Guy, P. R. Radford
and J. C. Viner in the implementation. The authors
are most grateful to M. V. Wilkes for his encouragement
in preparing the paper and his help in drafting it.
Residual incomprehensibility is likely to be due to not
taking his advice.

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Multiprogramming supervisor

Appendix

The way in which the structure is used is illustrated by the following list of SER bases, with brief notes on the purpose of

SER base

Object program
Input peripheral
Output peripheral
Magnetic channels
Consoles

Timed routines
Well

Idling

the associated SERs.

Notes

There are 39 of these which are described in the text.

There are 2 per peripheral, one for starting and one for running. 12 bases in all.

There are 3 per peripheral, for starting, running, and exception conditions. 24 in all.
These administer the autonomous channels. There are 2.

These form a pool, and administer transfers to and from the on-line consoles. 29 bases.
The 1-second and 1-minute routines described in the text.

Four bases serve the SERs working the Well.

This SER is described in the text.

The remaining bases serve SERs with more particular purposes:

Blocklet reserve
‘Operator communication

‘Tape scheduler
Date

Job decoder
Job arrived

Job scheduler
Start OP

‘OP dump

Kill job

PDP7

Map dump
Status messages
‘Output peripheral messages

Maintains a reserve of blocklets to enable certain other SERs to avoid halting.
Two bases: the SERs handle operator communication via the console typewriter or ordinary
peripherals.

Allocates magnetic tapes to drives, checks their identity, etc.

Handles change of date and time and messages about them.

Decodes Job Descriptions when a new job is put in at the peripherals.

Does certain administrative tasks when peripheral input of a job is complete.
Decides which job to start next.

Sets up the object program base for a job and starts it.

Removes object programs from core to disc in case of dire space congestion.
Removes a job from the system, whatever its status.

Works the link to the PDP7. Logically it is not unlike a channel SER.
Copies the disc allocation maps from core disc when necessary.

Responds to operator queries about system status.

Handles messages about output peripherals, e.g. to reload printer.

255

¥20Z Iudy 61 U0 3senb Aq 6G€9L /2 12/S/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

