The outer and inner syntax of a programming language

By M. V. Wilkes*

It is pointed out that the syntax of a higher level programming language such as ALGOL may
be divided into two parts, to which the names outer and inner syntax are given. The outer syntax
is concerned with the organisation of the flow of control, and is programmer-oriented, while the
inner syntax is concerned with performing operations on data held in the memory of the computer,
and is therefore data-oriented. It is shown how in the case of ALGOL it is possible to make a
clean separation of the inner and outer syntax, and attention is drawn to certain practical advantages
of regarding programming languages in this light.

(Received March 1968)

There are two sides to a programming language; one is
concerned with organising the pattern of the calculation,
and the other with performing the actual operations
needed. These two sides are, in fact, nearly disjoint in
ALGOL and similar languages, although this fact needs
to be brought out. I hope that the discussion given in
this note will provide some new insight into this aspect
of programming languages. I must ask admirers of
ALGOL to forgive me for taking that language as an
example; my aim is to illustrate the formal problems
involved in making a distinction between inner and outer
syntax, and not to make any proposals relating to
ALGOL itself.

Following the above approach, we may divide the
syntax of a language into two parts. The first, referred
to as the outer syntax, is concerned with performing the
operations, and the second, referred to as the inner
syntax, is concerned with organising the calculation. If
the inner syntax is left undefined, then we have a language
which can be called the outer language. This language
is logically complete, but abstract in the sense that we
do not commit ourselves in any way as to the nature of
the objects declared, or define what the executable state-
ments do. Having formally specified the outer language
in this way, we are able to write a program to execute
statements without having the least idea what the effect
of that program will be. Bertrand Russell’s definition of
mathematics is worth quoting in this context: ‘Mathe-
matics may be defined as the subject in which we never
know what we are talking about, nor whether what we
are saying is true.’

In an outer language, we need a set of identifiers, a
set of data types, a set of predicates, and a set of state-
ments; typical members of these sets will be denoted by
n;, d;, s;, respectively. From the point of view of the
outer language, these are all undefined entities. A pro-
gram contains declarations by means of which identifiers
are assigned to examples of particular data types, and
it also contains statements taken from the set of which
a typical member is 5;. The concept of an outer language
will, perhaps, be clarified by the example given in Table 1.

This is the outer syntax of a language based on ALGOL 60.

It will be seen that this syntax closely follows the
relevant parts of the syntax of ALGOL 60 with the
following exceptions.

(1) Features such as comment and dummy statement
are omitted.

(2) The identifiers n; are assumed to be available
ready made and no recipe is given for constructing
them out of letters. This is not a point of any
importance.

(3) No for statements or switch declarations are
defined. These are discussed below.

(4) No specific types are defined.

Instead of
{type) ::= real|integer|Boolean
we have
{type) ::= any one of d,.
It follows that arithmetic expressions do not appear,
although Boolean expressions are needed for con-
ditional statements. Instead of
{(Boolean primary) ::= (logical value)|
variable)|<function designator)|<relation)|
({Boolean expression))
we have
{(Boolean primary) ::= any one of p,|({Boolean
expression))

A language with this syntax is abstract in the sense in
which that term is used above. A program can be
written in the language but as long as the d,, p;, s; remain
undefined, the action of the program is also undefined.

If the d,, p;, s; are now defined as in ALGOL 60, we
have a fully defined language. The extra syntax that
has been added is the inner syntax of this particular
language. Note that the data types, and the data
structures that represent them in the computer, are given
concrete meanings when the inner syntax and associated
semantics are defined.

Examples
To emphasise that the p; and s; do not necessarily

* Director, University Mathematical Laboratory, Corn Exchange Street, Cambridge

¥20Z Iudy 61 U0 3senb A /€91 ¥/092/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Outer and inner syntax

Table 1

Outer syntax of a language based on ALGOL 60

Delimiters

{delimiter) ::=, | : | ; |(|)|begin|end|declarator

{declarator) ::= any one of d;| procedure

(logical operator) ::= = |D | V| A]|

Expressions

{expression) ::= (Boolean expression)|{designational
expression) |

Boolean expressions

{Boolean primary) ::= any one of p;| ((Boolean
expression))

{Boolean secondary) ::= (Boolean primary)|]
{Boolean primary)

{Boolean factor) ::= (Boolean secondary)|(Boolean
factor) A\ (Boolean secondary)

{(Boolean term) ::= (Boolean factor)|{Boolean term)
V (Boolean factor)

(implication) ::= (Boolean term)|<implication) D
{Boolean term)

(simple Boolean) ::= {implication)|{simple Boolean)
= (implication)

(Boolean expression) ::= {simple Boolean)|{if clause)

{simple Boolean) else {Boolean expression)

Designational expressions

{label) ::= (identifier)

(identifier) ::= any one of n;

{designational expression) ::= (label|{if clause)
label) else {designational expression)

Compound statements and blocks

<unlabelled basic statement) ::= any one of s;|<goto
statement)|<{procedure statement)

(basic statement) ::= (unlabelled basic statement)|
(label) : (basic statement)

{unconditional statement) ::= <basic statement)|
{compound statement)|{block)

(statement) ::= (unconditional statement)|{conditional
statement)

{compound tail) ::= (statement) end |{statement};
{compound tail)

{block head) ::= begin <{declaration)|(block head);
{declaration)

{unlabelled compound) ::= begin {compound tail)

(unlabelled block) ::= (block head); {compound tail)

{compound statement) ::= (unlabelled compound)|
(label) : {compound statement)

¢block} ::= <unlabelled block)|(label) : {block)

261

Goto statements
{go to statement) ::= goto {designational expression)

Conditional statements

(f clause) ::= if (Boolean expression) then

(if statement) ::= (if clause){unconditional statement)|
(label) : <if statement)

{conditional statement) ::= if statement)|{if state-
ment) else (statement)

Procedure statements

{procedure identifier) ::== <identifier)

{actual parameter) ::= (string)|<{expression)|{pro-
cedure identifier)

{actual parameter list) ::= <actual parameter)|<actual
parameter), {actual parameter)

{actual parameter part) ::= {empty>|({actual parameter
list))

{procedure statement) ::= (procedure identifier>{actual

parameter part)

Declarations

(type list) ::= (identifiery|<identifier), {type list}
{type) ::= any one of d;
{type declaration) ::= {type)<{type list>

Procedure declarations

{formal parameter) ::= <{identifier)
{formal parameter list) ::= (formal parameter)|{formal
parameter), (formal parameter)
(formal parameter part) ::= {empty)| ({formal para-
meter list))
{identifier list) ::= (identifier)|<identifier list),
{identifier)
{value part) ::= value {identifier list)|{empty)
(specifiery ::= {type)|label|procedure|{type> procedure
{specification part) ::= {empty)|
(specifiery(identifier list); |<{specification part)
{specifier)<identifier list);
{procedure heading) ::= {procedure identifier)
{formal parameter part); {value part){specification
part)
{procedure body) ::= (statement)|{code)
{procedure declaration) ::=
procedure (procedure heading){procedure body|
{type)> procedure {procedure heading){procedure
body)

¥20Z Iudy 61 U0 3senb A /€91 ¥/092/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Outer and inner syntax

relate to numbers, I will take as examples the statements

load A
unload A
fire A

and the predicate
A is loaded

where A has been declared as the name of a gun by the
declaration
gun A

An example of a compound statement is
begin Jload A; fire A; end

A complete program block, containing the declaration
of A, would be

begin gun A;
load A; fire A4;
unload A;

end

The statement unload A is strictly unnecessary, but is
included as a precaution against untoward happenings
during the debugging process.

An example of a conditional jump is given in the
following program for reducing a fort. Note the new
predicate F flying where it is assumed that F has been
declared in an outer block to be of type flag.

begin gun A
L1: load A; fire A,
if F flying goto L1;
end

In order that it should be possible to write programs,
certain relations must exist between statements and pre-
dicates. With exceptions to be mentioned presently,
there must be at least one statement (which can be a
compound statement) such that, after the execution of
that statement, a given predicate would, if tested, be
found to be true; similarly, there must exist at least one
statement (which may be compound) such that, after
the execution of that statement, the negation of a given
predicate would, if tested, be found to be true. State-
ments and predicates, or statements and negations of
predicates, connected in this way may be said to be
associated.

In the above example, the predicate A4 is loaded is
associated with the statement load A, while unload A
and fire A are both statements associated with A is
loaded.

The exceptions refer to predicates depending on con-
ditions outside the direct control of the program, for
example, on the state of a peripheral device.

The for statement

The for statement is essentially a device for con-
trolling the flow of the program and belongs properly,
one would think, to the outer syntax. However, in
ALGOL 60, for statements can contain expressions, the

syntax of which belongs to the inner syntax. Some
analysis must, therefore, be undertaken before a surgical
operation can be performed which will make a clean
break between the outer and the inner syntax.

In the outer syntax given above, the only completely
defined statement is goto. An enrichment of the outer
syntax is the inclusion of an assignment statement for
identifiers. Such a statement would permit identifiers to
appear to the right and left of the := sign. If this
addition is made, it is possible to define within the outer
syntax a for statement of the type regarded as primitive
in ALGOL, that is, a for statement having an explicit for
list.

An example of the use of such a statement is as
follows:

begin
gun X;
for X .= A4, B, C do
begin load X';
fire X;
end
end

The most useful type of for statement, however, is one
that allows counting, and in order to introduce this into
the outer syntax, we must specify one of the data types
to be integer. Defining one of the data types in this
way does not, as we shall see, seriously affect the abstract
status of the outer language. It is now possible to write
the following procedure for firing a salute.

procedure salute (n); value n;
begin integer 7; gun A4;
for t := 1 step 1 until » do
begin
load A; fire A
end
end

Thus when the head of a state approaches, the procedure
call salute (21) would be in order.

Although, for the purpose of the for statement, a
data type integer has been defined in the outer language,
it is not necessary that this data type should be made
use of when implementing the inner language. It is, of
course, open to us to do this, since everything defined
in the syntax of the outer language remains valid in the
inner language. Circumstances in which it would be
more convenient to have a different technique for repre-
senting integers in the inner language are:

(1) When the technique that is natural and efficient
for representing integers in the outer language
would not be appropriate in the inner language.
This could be the case, for example, if integers
were stored in the inner language in the manner
used in LISP.

(2) When it is desired to have a standard outer lan-
guage into which a number of separately written

¥20Z Iudy 61 U0 3senb A /€91 ¥/092/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Outer and inner syntax

inner languages can be ‘plugged’. The task of
implementing a given inner language is made more
self-contained; although perhaps at the cost of a
small amount of redundancy, if any data types
that have been defined in the outer language are
ignored.

If similar data types exist in both outer and inner lan-
guages, the nomenclature must, of course, be chosen to
keep them separate. One could, for example, use
counter in the outer syntax, and integer in the inner
syntax.

The remarks made above about the for statement apply
also to the switch, which also needs integers for its
implementation.

We have now obtained a very clean (although not
necessarily unique) cut between the outer and inner
syntax. It is not, however, possible for one of the
variables in the for statement—the range for example—
to be changed by the program. We would, therefore,
need to provide a transfer function which would enable
an integer belonging to the outer syntax to be set equal
to an integer belonging to the inner syntax. If the same
data structure is used in both the inner syntax and the
outer syntax, this transfer function is, of course, the
identity operator. In other cases, a subroutine would
have to be specially written when the inner syntax was
being implemented. Naturally, in order to write this
subroutine, a knowledge of the data representation used
for storing integers in the outer language would be
needed.

Conclusion

The primary purpose of this note will have been served
if it has been made clear that there are two influences
controlling the form of a programming language; these
influences operate from opposite ends. There are
features of the language controlled entirely by the pre-
dilections of the programmer, ranging from genuine
minimum requirements as to what he is able to say, to
fads and fancies. There are other features controlled by
the nature of the data types and representations that the
language is designed to manipulate, and the storage
allocation scheme that is used to accommodate them;
in this class, the most fundamental concern data types
and the operations to be performed on the data.

It is not to be expected that any existing language will
separate cleanly into the two parts. It has, however,
been shown that, in the case of ALGOL, the separation
can be effected without great cost. No doubt it could
be effected in ways other than the one given here, since
there is a certain amount of arbitrariness about what is
regarded as belonging to the outer language and what
is regarded as belonging to the inner language. In
whatever way the separation is done, we shall be left
with an outer language of great manipulative power, to
which can be fitted a variety of inner languages, each
designed to manipulate a different set of data structures.
It is suggested that along these lines might be found a
solution to the problem of enabling a sufficiently skilled
programmer to extend a language by adding new data
types while preserving intact the external form of the
language.

Book Review

The Information Centre, by Morton F. Meltzer, 1968; 160
pages. (London: Bailey Bros. and Swinfen Ltd., 85s. 6d.)

This well-written book presents to top management the case
for establishing a comprehensive information centre to deal
not only with purely scientific or technical information
relevant to the business but one which also acquires, files
and distributes, as needed, all relevant commercial inform-
ation as well.

In presenting his case the author finds himself in a difficulty.
Because he demands the critical attention of busy senior
executives he cannot afford to be lengthy. But he also needs
to display all the specialist techniques that the manager of a
technical information centre can command (thereby also
justifying the salary he claims), but convincing demonstra-
tions of specialist skills rapidly get wordy or technically
intricate, and therefore unreadable by executives. So the
author has to compromise. The result is a readable report
or essay of 126 pages (rather expensive at 8d. per page) which,
to the uninitiated, teasingly mentions rather than explains
many facets of information work.

So, in spite of its brevity, the book is comprehensive. The
author helpfully admits that information services cost money

263

and boldly produces some realistic estimates of the initial
and running costs of an information department. His
weakest chapter is on ‘Determining the return on investment’
on an information centre. It is unconvincing because no
one has yet been able to quantify the return on information
per se. Information is only one of many elements in the
complex of human activity engaged in productive enterprises
and is peculiarly resistant to isolation and objective quan-
tification.

The greatest danger that faces the author is that the book
could succeed too well. The executive who reads it might
discern that the role assigned by the author to the manager
of the technical information centre he describes would make
the manager a mighty power in the business. The executive
might decide that this book could best be regarded as an
outline systems analysis of an information service which
would more safely be provided by upgrading, not the manager
of the technical information centre, but the firm’s computer.

Foreword, acknowledgements, notes, glossary, selected
bibliography and index all help to provide a grand total of
160 pages.

B. C. BrookEs (London)

¥20Z Iudy 61 U0 3senb A /€91 ¥/092/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

