The use of Roth’s decomposition algorithm in multi-level

design of circuits

By D. F. Barnard and D. F. Holman*

The paper describes a procedure for synthesising multi-level combinatorial switching circuits.
This procedure is based on an algorithm of Roth and Karp to find the possible decompositions
of a partial switching function. The procedure builds up a circuit using a specified set of gates of
vertex type. By repeated application of the algorithm, a complete realisation of the function is
obtained whose cost is defined to be the sum of the costs of the basic elements. This cost can then
be used as a cost bound in a systematic search for a realisation of minimum cost.

(First received January 1968 and in revised form May 1968)

The synthesis of switching circuits has received a good
deal of attention from many authors, particularly in the
realm of 2-level minimisation using prime implicant
tables or charts. However, much work has also been
done on other aspects of the problem, particularly from
the point of view of decomposition theory (Ashenhurst,
Roth), and it is this line of attack which has led to the
computer applications described herein. A decom-
position algorithm was published by Roth and Karp
(1962) and some computer programming was done in
America in the early sixties. The present authors have
made use of this algorithm as the basis of a KDF9
computer program to produce a realisation of a given
logical function from a given set of logical units. The
intention is to obtain a circuit which is economical. If
the algorithm is carried to completion, a circuit of
minimum cost will be obtained; but the computation
time for this may be excessively long if the number of
variables is large.

Decompositions and the synthesis problem

This section deals with the basic ideas behind the
algorithm and is purely expository.

A Boolean function F of n variables is frequently
specified by a table of combinations. The n variables
are associated with the inputs to a black box. The table
lists the combinations of the values of the variables,
either 0 or 1, for which F = 1, i.e. the black box has an
output. If don’t-care conditions are also specified it
becomes necessary, for the purposes of explaining the
algorithm, not only to have the above list but also a
table of input combinations for which F = 0. If there
are any input combinations not included in these two
lists they are the don’t-care ones. The first table is called
the on-matrix, the second the off-matrix.

An example of a Boolean function of (say) four
variables might be:

ON-MATRIX OFF-MATRIX
0111 1100
0101 1010
1011 1001
1101 0011

A more compact notation is achieved by using n-tuples
of 0, 1 and x. These n-tuples we call cubes and if no x
is present the n-tuple is called a vertex. A cube is a
shorthand notation for a set of vertices obtained from
the cube by changing the xs to 0 and 1 in all possible
ways, e.g. 1x01 stands for 1001 and 1101.

A five-variable Boolean function might then be speci-
fied in the following way:

ON-MATRIX OFF-MATRIX
abcde abcde
1x11x 10000
00x11 100x1
011x1 1x01x
00000

The on-matrix corresponds to the usual sum of pro-
duct form of a Boolean function, i.e. in the above
example

f=acd + abde + abce + abcde

Now consider the circuit of Fig. 1. It may have been
built up by the following process:

@

b d

T
LT
IR

| Black Box

{
F

<«—a

This represents the given specification
F= F(a, b,c,d,e).
(i)

a c d e
|

«——
Q'
< o~

<——|

« v b4
Black Box

1

F;

* Mechanical Engineering Laboratory, The English Electric Company Limited, Whetstone, Nr. Leicester.

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

By tests to be explained later, the black box of (i) could
be replaced by the above circuit, i.e.

F(a, b, ¢, d, e) = Fi(«(a, b), a, c, d,).

The move from stage (i) to (ii) is called a decomposition
of the given Boolean function F w.r.t. « and the given
partition of variables, and F; is called the image of the
decomposition. Assuming that such a decomposition
exists one has next to find the on and off matrices of F;
(see later)

(iii)
a e d tlz T‘
! L
e
vy b B
Black Box
|

¥
F>

At this stage we have
Fl(a, a,c, d’ e) = Fz(ﬁ(d, C), o, e, d)

This equation represents a decomposition of the function
Fy, and F; is the image.

(iv)

<« —
=

o
!
|
|

[

e

i

44 vy
Black Box

|
|
F

A

Next we have
F2(/89a9 e, d) = Fs()’(d, /8)’ o, e)
)

<—— R

Q|
<_

S [«——a

This final stage gives

F3(V, x, e) = 8(7/’ &, e)'
Piecing together this sequence of decompositions we
have
F(a, b, c, d,) = 8(y(d, B(a, ¢)), «(a, b), €)

representing the circuit of Fig. 1. Each decomposition
corresponds to ‘factoring off” an element of the circuit.

270

ac

ab |¢ ilr
4 @d
] i
e |7
Ly
o |

e

Fig. 1. Realisation of a functien by single output elements

<«——
ol DI
<«—n
&[T TN
| —a

|
DR
Yvoooed v
Hooh
T T
\ v v
Fy F> F;

Fig. 2. Multi-output function, & is an element with 2 outputs

The sequence is of course not unique as we could have
started by ‘factoring off” the element B, etc.

Similarly it can be shown that Fig. 2 corresponds to
the decompositions:

Fl =)’1(“1(‘1, b)’ Bl(a’ C))
F2 = 61(061((1, b)9 81(d9 e)5 C)
F3 = gl(aZ(a, b)a 8Z(da e))

Decomposition tests

Consider a function of the n variables {x, . . ., x,} = X.
Partition X into 2 disjoint subsets (no elements in
common) Y and Z such that every x, is either in Y or
inZ LetY={y,...,y,}and Z={z, ..., z,_}; the
variables of Y and Z are the variables of X, possibly in a
different order. If F(X)= G(«(Y),Z), then G(e, Z)
and «(Y) are said to represent a simple disjunctive
decomposition of F(X). It is said to be disjunctive
because Y and Z are disjoint.

Now F(X) is given by on and off matrices. We may
rearrange the variables of X so that the variables of Y
occur first and are followed by the variables of Z. The
first part of a cube in this rearranged matrix is called the
A-part and the remainder the u-part.

As an example let F(a, b, ¢, d) be given by:

abcd abcd
u':101 x 11 x1
ur:1x10 v2:1 x0x

w:01 x x ¥:x 00 x

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

Refer to the cubes in the on-matrix as u!, u2, u3 and those
in the off-matrix as v!, v2, v3.

Now if A = {a, b}, u = {c, d} then no rearrangement
of variables is necessary and e.g. u} = 10, v2 = Ox.

In order to decide whether there is a decomposition
F(X) = G(«Y), Z), we introduce the idea of incom-
patibility. Any two cubes u and v, one in the on-matrix
and one in the off-matrix, must have different images
as the result of the decomposition F(X) = G(«(Y),Z).
Therefore if the two cubes have a common u-part, we
must have «(u;) 5= o(v,), for otherwise some cubes of
the image G(«,Z) would appear in both the on- and
off-matrices. We then say that the A-parts of u and v
are incompatible if their u-parts intersect. A-parts
which are not incompatible are said to be compatible.

In the example, u), and o) have the intersection 11.
Since F(1011) = 1 and F(1111) = 0, it is necessary that
G((10), 11) #£G((11), 11), and so o«(10) 7= «(11); in
other words the A-parts 10 and 11 are incompatible,
written 10 ~ 11.

In order to determine whether a decomposition exists,
we consider every pair of cubes u/, v/. If their u-parts
intersect we obtain an incompatibility. If all the incom-
patibilities are taken into account, we must be able to
divide all the A-parts into 2 mutually compatible sets in
order to obtain a decomposition. Then one of these sets
will have «(Y) = 1, the other «(Y) = 0.

Referring again to our example, we have the following
situation,

u), intersects v}, giving 10 ~ 11
u3, intersects v}, giving 01 ~ 11
u3 intersects v2, giving 01 ~ 1x

u3, intersects v3, giving 01 ~ x0

The A-parts cannot be split into fewer than 3 mutually
compatible sets, since 10 ~ 11, 01 ~ 11 and 01 ~ 10;
therefore there is no decomposition for any «, since we
must assign 3 different values to «(10), «(11) and «(01),
and we have only the 2 values 0 and 1 available.

In the foregoing remarks we have restricted ourselves
to single-output elements o«; Roth’s algorithm covers
also the situation when multiple outputs are allowed,
with decompositions of the form

F(X) = G((Y), 0p(Y) . . . 2(Y), Z),

the condition for existence of a decomposition is that
the number of mutually compatible sets must be <2’
Thus in the example above a decomposition can be found
if we use elements with 2 outputs.

These considerations are stated formally in two
theorems in the paper of Roth and Karp (1962).

Theorem 1

Given F and o, there exists G such that F(Y,Z)
= G((Y),Z) if and only if, for all y,eY and y,eY,
y1 ~ y, implies a(y;) 7 a(yy).

27

ab
00 O01 10 11

00| o 1 0 0 ON-MATRIX OFF-MATRIX

A u A "

cd 01 0 1 0 0 ab cd ab cd
10 1x 11 x1

o T L I Ix 10 Ix Ox

11| x 1 1 0 01 xx x0 Ox

Fig. 3. Decomposition chart—disjunctive case

ab
00 01 10 11

000 | O X 0 X

001 0 X 0 X

010 x x 1 x ON-MATRIX OFF-MATRIX
A I A m
bedOI | x | x | 1 | x ab bed ab bed
10 Olx 11 1x1
Rl I L N i 110 11 10x
101 | x 1 x 0 01 Ixx x0 00x

110 X 1 x 1

111 x 1 X 0

Fig. 4. Decompeosition chart—non-disjunctive case

Theorem 2 (stated here in simplified form)

If the cubes of Y can be partitioned into not more than
two classes of mutually compatible elements then there
exist @ and G such that F(Y, Z) = G(«(Y), Z).

Up to now we have been talking about disjunctive
decompositions. If the subsets Y, Z are not disjoint
then the decomposition F(Y, Z) = G(«(Y), Z) is said to
be non-disjunctive and the variables Y n Z are referred
to as the redundant variables. The non-disjunctive case
is easily dealt with by including the redundant variables
in both A- and u-parts; e.g. if A = (a, b), p = (b, c, d)
our example becomes

abbcd abbcd
1001 x 111x1
1xx10 I xx0x
011xx x000x

Where an x occurs in the b position we must exclude
cubes which require b to be both 0 and 1 simultaneously.
The term 1 x x 1 0 on the left is therefore replaced by
the 2terms 11 110and 10010, and on the right
1 xx0 xis replaced by 1110xand 100 0 x. We
have now reduced the problem to the disjunctive case.

The notion of compatibility has a straightforward
interpretation in terms of decomposition charts. The
example discussed above can be represented in terms of
the chart of Fig. 3.

The A-parts appear at the head of the column, and the
u-parts at the beginning of the row. Then if two
columns of the chart are the same, apart from entries
where the function is undefined, then the vertices heading

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

these columns are compatible, and the incompatibilities
are seen as distinct columns in the chart. In fact, the
three incompatibilities we found can be seen as the three
different columns 01, 10, and 11. Theorem 2 translated
means that the columns must be able to coalesce into
not more than two distinct columns in order to obtain
a decomposition. The subject has been treated from the
point of view of charts by Curtis (1962), but this is hardly
suitable for computer implementation. It appears that
in fact we now have the algebraic equivalent of a chart
technique. The redrawing of the chart with different
variables appearing as rows and columns corresponds
directly in our method to changing to a different A-part
and p-part. The interpretation of the non-disjunctive
choice of A and u as mentioned above is shown in Fig. 4.
It can be seen that it is now possible to find a decom-
position; in fact there is only one incompatibility
relation, 01 ~ 11, so that we can choose any function «
for which «(01) % «(11).

Decomposition tables

A tabular method for determining decompositions of
vertex type will now be described. A vertex function
is one which is either ON for only one input combina-
tion, or is only OFF for one input combination. This
includes the commonly used gates such as AND, OR,
NAND, NOR, but excludes non-equivalence. The
input combination which is so distinguished is called
the distinguished vertex, V«. A decomposition F(X)
= G(«(Y), Z) is said to be of vertex type if « is a vertex
function.

Suppose that we have a 4-input function F(a, b, c, d)
with inputs a, b, c,d and that the cubes u = 1001,
v = 1101 appear in the ON, OFF arrays respectively.
Notice that these two cubes differ in the input b but
have the same input values for a, c,d. Now an incom-
patibility relation will be obtained from these two cubes
if and only if we choose the u-parts so that they have
an intersection; i.e. if b is not in the u-part but in the
A-part. If we attempted all possible disjunctive 2-input
vertex decompositions in turn, then from consideration
of these two cubes we should obtain incompatibility
relations for decompositions with A-parts (a, b), (b, ¢)
and (b, d) but not for the A-parts (a, c), (a, d) and (c, d).
These incompatibilities are obtained by simply writing
down the A-parts concerned, for example, for A = (a, b)
we get 11 ~ 10. All the incompatibilities can be
expressed at once by writing down all the possible
distinguished vertices in the form

abcd

1101
1001

where it is to be emphasised that » has been assumed
to be in the A-part.

Suppose now that the ON and OFF arrays also
contain the cubes 0lx1, 0001 respectively. These also
differ in the input b, and so another set of incompati-

(®)

272

bilities arises when we consider all A-parts which include
b, expressible in a form similar to the above as

abcd

01X1
0001

®)

Consider now the total effect of all these incompati-
bilities. If A = (a, b), we have 11 ~ 10 and 01 ~ 00.
Hence there can be no distinguished vertex. If A = (b, ¢)
we have 10 ~ 00 and 1 x ~ 00; hence there is a distin-
guished vertex, 00. If A = (b,d), we have 11 ~ 0l
(twice) so either of these may be a distinguished vertex.
Our shortened way of expressing all these results is

abcd

X1X1
X001

)

Now this can be obtained by combining in pairs the
cubes from the two expressions above, and putting X
where either contains an x, and also where the two
corresponding cubes are opposed

i.e.

) 1101 01X1 X1X1

1001 and 0001 gives X001

Define the distance between two cubes as the number of
input positions at which one cube contains a 1 while
the other contains a 0. The distance between the pairs
above was 1.

Take two cubes at distance 2, e.g. 0101,0000. Unless
we require « to have inputs b, d there are no incompati-
bilities. With « = o(b, d) we have Vo = 11, or 00.
Thus for pairs at distance 2 we make a partial entry

®) X1X1 1.1 X1X1

X001 and .0.0 gives X00X

Pairs at distance 3 or more do not give rise to any
incompatibilities. The restrictions for variable b now
state that the only vertex-type decompositions available
are

A " Vo o
b, d a,c 11 bd or bd
b, c a, d 00 b+corb+c

Thus we have an algorithm with which to produce a
table of all possible 2-input disjunctive decompositions.
The table is composed of a number of subtables, one
for each variable, i.e. the ith subtable indicates those
decompositions allowed with the ith variable as an input.
These are the ones that have not been eliminated by the
above process.

When we choose a decomposition with inputs i, j from
the ith subtable, we must check that this is also contained
in the jth subtable.

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

In Fig. 5 we have drawn up the complete decom-
position table for the function specified in Fig. 3. The
a-subtable indicates a decomposition, A-part (a, b) with
V. = 01 but this is not confirmed in the b-subtable and
so is invalid. Note that it is only necessary to look on
the right-hand side of the main diagonal for possible
decompositions, the left-hand side being used to confirm
the decomposition in the second subtable. Thus the
table indicates no disjunctive decompositions.

The algorithm consists of the following steps

(1) Take a pair of cubes from the specification, one
from the ON array, one from the OFF array.

(2) Find the distance, d between them.

(3) If d = O fail.

(4) If d = 1 a complete entry is made in the appro-
priate subtable.

(5) If d = 2 a partial entry is made in the subtable
corresponding to the left-hand variable.

(6) If d > 3 the pair is ignored.

(7) Go to (1).

This is continued until all pairs have been investigated.

1-redundancy decompositions

We can also draw up a table of decompositions with
one variable redundant. The difference between this
case and the disjunctive one is that now, a pair of cubes
only restricts the choice of « if they are at distance 1,
because otherwise the u-parts do not intersect.

E.g. take one of the previous pairs 01x1, 0001; if the
inputs are a and b or b and d then the restrictions are as
before, but for inputs b, ¢ 0111, 0001 are at distance 2
and so do not contribute anything, while the pair 0101,
0001 indicate V, = 10, or 00.

So the restrictions of 0l1x1, 0001 are written 0-01
where the dash indicates that either a 1 or 0 may be used.

Another pair of terms x100, 00xx would be sum-
marised as 0-00. The pairs of entries are thus combined
as follows

0lx1 x100
R — 0-01, 0-00 — 0-0x
0001 00xx

Thus whereas each subtable of the disjunctive table con-
tains two entries, the subtables in the 1-redundancy case
only contain one. The ith subtable of the 1-redundancy
table indicates which decompositions are allowed with
the ith variable as the non-redundant input. Fig. 6
shows the decomposition table for the function of Fig. 3.

We can now modify our algorithm so that at the
fourth step, if the distance is 1 then we make an entry
at the appropriate subtables of both the disjunctive
table and the 1-redundancy table.

Procedure for synthesis of a function

The procedure for obtaining a complete realisation is
as follows. The starting point is the on- and off-matrices
of the function, and the relative costs of the available

M

273

a b ¢ d
all X X X
0o 1 X X
bl X 1 X X
X 0 X X
cl|l1l X 1 X
X X 0 X
d|1 1 X 1
1 X 1 0

Fig. 5. Decomposition table for the example of Fig. 3,
disjunctive case

a b ¢ d
a|l— 1 X X
b| X — X X
c|l X — X
d|{1 1 1 —

Fig. 6. Decomposition table for the example of Fig. 3, 1-
redundancy case. From the a-subtable we see that there are
two decompositions with redundant variable b, ¥V, = 01 or 11.
The table indicates a total of ten possible decompositions.

gates; the basic steps needed to achieve a circuit of
minimum cost are

(1) determine what possible decompositions exist

(2) select a decomposition and find its image

(3) find the cost of the circuit at this stage (this is
defined as the sum of the costs of the elements
which make up the circuit).

The repetition of these steps continues until the func-
tion is reduced to a single variable, when we have a
complete circuit of known cost. It may then be thought
desirable to try to find other realisations which may be
cheaper. This can happen if we have at any time made
a choice at step 2 of decomposition which is not the best.
In order to improve the situation we can then retrace
our steps and try a different choice. The search may be
continued as long as it is thought worth while—to try
every possible circuit may of course take some con-
siderable time, and it is usually better to be content with
a reasonably good circuit.

Returning to our example, let us try and complete the
realisation. We already know from Fig. 4 that there
are non-disjunctive decompositions with A = (g, b),

= (b, c,d). Selecting « = a.b as the first choice, we
get the image

abcd abcd

001 x 01x1

0110 0x0x

11xx

The only disjunctive decomposition available is B = b.d,

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

giving the image

xcpB xacpB
010 0x1
1 x x 00 x

Again there is only one disjunctive decomposition,
y = c¢B. The image is

xy

o
0 00
1

= =

This is a simple OR function, so we have the complete
circuit, shown in Fig. 7. This compares with the normal
form realisation in Fig. 8 which can easily be obtained
from the chart of Fig. 3.

Computer implementation on KDF9

The algorithm has not been programmed in its full
generality. At present single-output decompositions
only are included, and the decompositions are restricted
to those of ‘vertex type’. At present two-input gates
only are allowed; these are represented by the decom-
positions with two variables in the A-part. The given
function may have up to 47 variables. The flowchart
for the program is shown in Fig. 9.

Because of the length of time required to search out
a large problem completely it is desirable that the first
circuit generated should be reasonably economic. This
is important even if a complete search is anticipated, as
the cost of the last circuit found is used as a cost bound
to limit the search, e.g. if at any stage there are » inputs
to the image then the cost of a circuit using this image
must be at least

(n — 1) X minimum gate cost + cost so far

and if this is greater than the cost bound then we can
reject this sequence. Ideally we would feed in the cost
of the cheapest circuit as data and use this as our cost
bound.

The rules that we use to select decompositions are as
follows:

(1) Basically we select them in the order in which they
appear in the table.

(2) If at any stage we have to select a 1-redundancy

decomposition we use a ‘l1-step look ahead’ pro-

cedure to see if there is one which will allow us to

to do a disjunctive decomposition at the next

stage.

If there is a cost bound then we do the cost check

outlined above.

It is necessary to prevent the phenomenon known

as cycling. This is the term used when the output

from a gate is either a constant or a function of

only one of its inputs.

e.g. the decomposition «(a, b) = a.b followed by

B(a, b) = a« + b means that the output from B8 is b.

©)
4)

274

b| |d
||
AND
|
NOT
a ’b l
c
-
AND AND
L
||
OR

ab bc cd
| | ||
’EI; AND AND
| |
L
i
OR
!

Fig. 8. Sum of products realisation of the same example;
this is more expensive if complemented inputs are not available.

(5) Itis desirable to prevent the formation of sequences
which are identical except for the order in which
the basic elements are chosen.

(6) A modification, which is being tested, is to bias
the program towards choosing decompositions
that involve the original inputs, when possible.
This tends to reduce the number of levels in the
circuit.

It is felt that this set of rules may not be the best
possible, and investigations are being continued on other
possibilities.

Results

One of the test cases that we have used is an eight-
variable function quoted by Roth [1961]. This is
shown in Fig. 10. Fig. 11 shows a realisation found by
Roth using an IBM 7090. On the KDF9 we have
obtained a first implementation in 1-6 sec. with a cost
of 32 and a final implementation in 68 sec. with a cost

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

Read G H
specification
an
gate costs
INOR INOR
Draw up
decomposition
tables
NOR
Are there any' F
decompositio
allowed I [——
Select a NOR
4 decomposition Detet D
elete
table and
y image l [__
NOR [NOR
Is there a E
no yes previous image
Renew | [-
i NOR B
image Return to I
previous image NOR NOR
and table
Are there more NOR
than two
variables left NOR
Print l I
circuit NOR INQR
details
C
Renew cost ’————I
bound
NOR
Return to |
last
table NOR
1 A
Fig. 9. The flow chart
ON-array OFF-array
R
ABCDEFGH ABCDEFGH ABCDEFGH I&O NOR NOR
llxxxxxx 0l xxxxx0 Oxxxx00x
lxx1xx11 0l xxxx0x Oxxxx0x0
1xx011xx 01 x0xxxx x0x1xx0x
lxxx1x11 0x0xxxxx x0x1xxx0
xx11xx11 0xx00xxx x0x00xxx NOR
x01011xx Oxx1xx0x x0xx0x0x
x01x1x11 Oxx1xxx0 x0xx0xx0
Oxxx0x0x x0xxx00x
Oxxx0xx0 x0xxx0x0

Fig. 10. Specification quoted by Roth and used by us as a

test case

of 26. These are shown in Figs. 12 and 13. The gate-
cost for this run was the number of inputs. The
additional gate-costs were tried:

2-input NOR gate : 4
I-input NOR gate : 1

275

|1

NOR

Fig. 12. First implementation on KDF9

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

Design of circuits

A B A C F D G H o] B E

NOR NOR

NOR

NOR NOR NOR

NOR

NOR

NOR

NOR

Fig. 11. Circuit found by Roth

time for minimum circuit 52 sec.

2-input AND : 2
2-input OR :2
NOT 01

time for minimum circuit 49 sec.

The value of the ‘I-step look ahead’ procedure (rule 2
above) is shown by the result that without it the first
circuit found had cost 47.

It will be noticed that Roth’s solution contains a
3-input gate, but to what extent his program allows the
choice of gates with more than two inputs we do not
know. Certainly decomposition theory applied with
vertex type gates can be used to give algorithms using
gates with an arbitrary number of inputs. As Ashen-
hurst and Roth point out, one of the properties of
vertex functions is that the existence of «(a, b, ¢) implies
the existence of B,(a, b), B,(b, ¢) and Bs(c, a) for some

References

A C A B F D H D B E

NOR NOR NOR NOR NOR NOR

NOR

NOR NOR NOR

NOR

NOR

NOR

NOR

Fig. 13. Final implementation on KDF9

Bi> B2, B3, and vice versa. Thus, if it was desirable to
extend the algorithm to 3- or 4-input gates this could be
done still using our 2-input decomposition table, e.g. if
the table shows that

Ay ={a, b} Vg =11
A ={b,c} V5 =10
Ay ={a,c} Vg =10

I

are possible then we can deduce the existence of
A={a,b,c} V,=110.

Acknowledgements

This paper has been written as part of the research
program for the Mechanical Engineering Research
Laboratory of the English Electric Company Limited,
Whetstone, Leicester. The paper is published with the
permission of the English Electric Co., Ltd.

Rorn, J. P., KArP, R. M., McFARLIN, F. E., and WILTS, J. R. (1961). A Computer Program for the Synthesis of Combinational
Switching Circuits, Proceedings of the 2nd Annual Symposium on Switching Circuit Theory and Logical Design. Published by

AlE.E.

Rorh, J. P., and KARP, R. M. (1962). Minimisation over Boolean Graphs, IBM Journal, Vol. 6, pp. 227-238.

CurrTis, H. A. (1962). Design of Switching Circuits, D. Van Nostrand Co., Princeton.

Ashenhurst, R. L. (1959). The Decomposition of Switching Functions, Proceedings of an International Symposium on the
Theory of Switching, April 2nd-5th, 1957. The Annals of the Harvard Computation Laboratory, XXIX, Harvard University

Press, Cambridge, Mass., 1959, pp. 74-116.

276

¥20Z Iudy 61 U0 3senb Ag €691 1/692/€/L L/oIoIe/|ulWwoo/woo dno-ojwepeoe//:sdiy wolj peapeojumod

