An extension of binary minimisation techniques to ternary equations

By S. L. Hurst*

This paper describes an extension of well-known binary minimisation techniques to cover the case
where the given variables have three possible states, termed 0, 1, and 2. Both graphical and
numerical minimisation techniques are considered. Algebraic relationships for 3-state (ternary)
equations are also developed, which show a close relationship to the normal Boolean identities.

This work was originally presented at the British Computer Society Symposium on Logic
Design, held at Reading University, July 1967.

Existing techniques for the minimisation of binary
combinational switching equations are well established
and known. They may be generally classified into two
useful categories, namely (@) plotting and mapping tech-
niques, as exemplified by Veitch and Karnaugh maps,!: 2
and (b) algebraic and numerical techniques, as exempli-
fied by the methods of Quine, McClusky, Flegg,
et.al3 % 56

All the above techniques refer specifically to the mini-
misation of binary functions whose variables have only
two possible values, namely 0 and 1. For ternary
functions, whose variables may take three possible
values, which will be termed 0, 1, and 2, an extension
of the former binary minimisation techniques becomes
necessary. Both the binary and the further ternary
techniques may, in fact, be regarded as particular cases
of the minimisation of s-state functions, where s is any
positive integer > 2.

Three-state ternary logic functions

Ternary logic functions will be defined as functions
whose one or more input variables 4, B, ..., n may
each take any one of three possible signal levels 0, 1,
or 2, and whose output Z may likewise take any one of
these three values 0, 1, or 2, under appropriate input
conditions. Fig. 1 below illustrates the difference
between normal binary working and such ternary
working.

The extension from two to three possible input and
output signal levels increases the theoretical number of
functions possible in any n-variable system from 22®
in the binary case, to 33" for the ternary case. Thus
for any given number of input variables, there is a vastly
increased number of ternary functions possible in com-
parison with the binary case.

A——]
Input B N Binary Output Z
Variables Logic |
Oorl) Function | (either
Oorl)
n————>

Now in the binary case a single equation such as
ABCD+ ABCD + ACD may express all input
conditions that give an output Z =1 (or 0). It is
axiomatic that in the absence of these specified input
conditions the output Z will be 0 (or 1). It is not
therefore necessary to write out both the Z =0 and
Z =1 conditions in order to fully specify the system,
though as is well appreciated in binary minimisation,
one may minimise to fewer terms very much more
efficiently than the other, thus making it often desirable
to minimise the complement of the function given.

In ternary working, however, the third possible level
of every input and output variable complicates the above
position. It is possible to write an equation such as:

A0B1C2D2 + AICZDI + AZBlCl = Zz

which specifies that the output Z will be 2 when the
four input variables A, B, C, and D have values 0, 1,
or 2, as indicated by their attached suffixes. However,
absence of these specified input conditions does not,
from this single equation, give precise information of
the output condition; all it does imply is that the out-
put will not be 2, but whether it is 0 or 1 is not explicit.

Thus two equations of the above form are necessary
to fully define the ternary system. For example:

AoBlczDz + A,C,Dy + A,B,C, = Z,
and AZBOCIDI + AlBlDl + B2C|D0 = Zl

may be given; in the absence of either of these specified
input conditions then the output will be 0.

Two of the three cases thus have to be realised with
appropriate circuits, and combined to give the one out-
put result Z; absence of either of these two states must
automatically generate the third output state. In a

A——
Input B N Ternary Output Z
Variables Logic —
0,10r2) Function | (either
Oor1lor?2)
n —>]

Fig. 1. Binary and ternary logic functions

* School of Electrical Engineering, Bath University of Technology, Ashley Down, Bristol 7

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

manner exactly comparable to the binary case, it may
in practice often be more economical to minimise and
realise, say, the Z = 0 and the Z = 1 cases, rather than
say the Z = 1 and the Z = 2 cases.

Ternary circuits which directly realise equations as
above have been developed.” Such circuits may be
employed to synthesise ternary logic equations in a
manner very similar to binary synthesis. Such realisa-
tion and the algebra as above by which the three output
levels of a function are defined, is somewhat dissimilar
in concept from that adopted by previous autho-
rities.8-15 These previous authorities have all expressed
a ternary function by one single algebraic expression,
often involving complex ternary operators and/or a
large number of terms. These complex single expres-
sions do not appear to have any direct method by which
they may be minimised.

Minimisation techniques for ternary equations

The minimisation techniques to be detailed will involve
the separate minimisation of each individual equation
for Z=0, Z=1, and/or Z = 2. No combination of
say a Z =1 and a dissimilar Z = 2 equation will be
made, with then a minimisation technique applied to
the combined equation. Each will be treated separately.
The only exception to this rule is if there is a large
group of terms which are common to two equations,
though again it is preferable to do a complete separate
minimisation, and then look for any common terms in
the final minimised expressions. Also since we shall be
dealing very largely with the manipulation of the values
of each variable of the function, the identification letters
A, B, C, etc. of the variables can profitably be dispensed
with in many cases. A four-variable function say,
Ay B; C, Dy can consequently be written quite unam-
biguously as 1120, in which form it is more amenable
to certain search procedures that will be covered later.
Care must, however, be exercised in this representation
in cases where one or more of the possible variables do
not appear; for example a function 4,D, must not be
written as 22, but rather as 2--2 to preserve the
unwritten variable identification correctly.

In all the minimisation techniques to be considered,
there is a fundamental process by which terms are
combined and the expression reduced, this process being
the search for a variable taking all three possible values
0, 1, and 2. If such a ‘complete’ variable or ‘triplet’ can
be found, the variable term in question may be deleted.

This feature may be expressed as:

X, Y, +‘X,, Y|+ X,Y,= X, where X, = any ter-
nary function of one or more variables, and Y = any
other ternary variable.

Precise proof of this statement may readily be obtained
by applying the fundamental identities given in Appendix
A

This ternary law is the exact counterpart of the binary
law:

278

X,Y + X,Y = X,, where X, = any binary function
of one or more variables, and Y = any other binary
variable.

The above binary law is the underlying basis of all the
various two-state minimisation techniques, all of which
require searches to be made in some guise for variables
which take both values 0 and 1. Minimisation tech-
niques for ternary functions may thus be built up on a
similar basis, looking now, however, for ternary terms
containing a ‘complete’ variable 0, 1 and 2.

The ternary minimisation techniques discussed below
fall into three general methods, namely (i) simple
tabular methods, (ii) graphical methods including
mapping, and (iii) algebraic methods utilising the funda-
mental algebraic identities plus some form of tabulation
or correlation procedure. As has already been noted,
the minimisation of each individual equation of a ternary
system for a particular output condition of 0 or 1 or 2
will be undertaken separately, no combining of these
separate equations being possible. Thus the following
techniques are applicable equally whether the expression
being considered is for output condition Z,, Z;, or Z,,
and hence in dealing with the techniques of minimisation,
a general expression, viz. Z = . . ., will often be written.

Minimisation of two-variable functions f(4, B) is
usually simple, and hence the lowest case we will here
consider is three-variable functions f(4, B, C). Any
technique discussed for f(4, B, C) is easily relaxed to
cover the simpler case of f(4, B) only.

Tabular methods of searching for ‘complete’ variables
0, 1, and 2, corresponding to the binary tabulation
method of Higonnet and Grea,!® are possible. The
tabulations, however, are extremely unwieldy due to the
excessive number of columns involved, and hence the
graphical and algebraic methods following show greater
advantages than any tabular method.

Turning therefore directly to mapping methods, the
two-dimensional mapping techniques of binary systems,
exemplified by the Veitch and Karnaugh diagrams, may
be extended to cater for ternary functions, but with
increasing difficulty in the clarity and continuity of their
layout, as the number of variables increases. Where,
say, Karnaugh maps for binary functions are clear and
useful for up to four variables, Karnaugh-type maps for
ternary functions become difficult to visualise for over
three variables.

The continuity between any one square and any
adjacent square that exists in binary Karnaugh maps,
including top-to-bottom and end-to-end adjacency, is
also difficult to establish in ternary mapping. Several
map layouts for three-variable ternary functions may
be suggested, but it proves impossible to maintain
adjacencies between the 0 — 1-—2 values of all three
variables in any two-dimensional layout. The best
layout as far as maintaining adjacencies is concerned is
as shown in Fig. 2, but even this layout has loss of
adjacency between the centre C = 0 and C = 1 regions
and the eight surrounding C = 0 and C = 1 regions.

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

(?)
%)
%

&
2,

S @wiﬁwk\\\\\>\ R

—) NN
S AN Xt SN

Ok \
2| 87247

C =0 = unshaded
(R BY77//4
C=2: XXX

Fig. 2. Revised ‘Veitch/Karnaugh’ type diagram for
ternary functions of three variables f(4, B, C)

In using such diagrams to minimise a given function,
(for example, A,;B,Cy + AoB,C; + A;B,C,y + A¢B,C;
+ A,B,Cy + AyB,C,, which reduces to 4,Cy + 4,C)),
it will be found that the presence of adjacencies in the
diagrams is of doubtful assistance in picking out com-
plete variables 4 or B or C =0, 1, and 2. However,
instead of any two-dimensional map-like diagram, a
three-dimensional ‘unit distance’ type diagram for
representing three variables is found to be by far the
most satisfactory and explicit. It is as shown in Fig. 3.

In this diagram the following are points of note:

(@) Any straight line of three points represents a
function of two variables only.

(b) Any complete plane (or surface) of nine points
represents a function of one variable only.

(c) ‘Unit Distance’, that is only one function changing
by one increment, exists also between any two
opposite faces of the cube, i.e. between 4 = 0 and
A =2 plane, B= 0 and B = 2 plane, C = 0 and
C = 2 plane.

Using this 3-dimensional representation to minimise
the above example function Z = 100 4- 011 4 110
+ 021 + 120 4 001, the plot indicated by ======
in Fig. 4 is obtained.

The immediate minimisation of this given function to
the two ‘lines’ representing 4,Cy + 4,C, is apparent.

Extending this three-variable minimisation further,
suppose the above function was given for Z = 0 con-
ditions, and that a further function, say 000 4 020 +- 101
+ 121 4 010 + 111 was given for Z = 1. Plotting this
further function (shown YWW in Fig. 4) reveals that it

279

B : O plane
222
(26)

A:2 200

plane
(Decimal

18 to 26)

122
azn

Azl

plane
(Decimal

9 t017)

A:0 -
plane <)
(Decimal
Oto8)

B:2 plane
[}

C:0 plane

Fig. 3. 3-dimensional representation for ternary functions
of three variables f(4, B, C): (‘Unit distance’ diagram)

222
26)

A:2 200
lane

(Becimal<

18 ta 26)

A=l

plane
(Decimal

9tol17)

A:0

plane
(Decimal

0to8)

B:2 plane
C:0 plane

Fig. 4. Plot of Z = 100 + 011 + 110 + 021 + 120 + 001
(Shown ====),
and also Z = 000 + 020 + 101 + 121 4 010 + 111
(Shown W)

simplifies to Z = 4,Cy + 4,C;. All remaining points
on the diagram must now be for Z = 2 output, and
examination will immediately reveal that given the
above two functions for Z, and Z,, Z, is simply 4, + C,.

In using this three-dimensional diagram for minimisa-
tion purposes, the fact that opposite faces of the cube
are ‘unit distance’ apart is of little moment, as three

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

points in line are required to reduce the function by one
variable, and three points in line can always be made
across a face or internally between faces of the cube,
without having to consider any external face-to-face
plot.

Considering next the minimisation of equations that
are given in AND rather than OR form, that is, alge-
braically, as products of sums rather than sums of pro-
ducts. Using any mapping or graphical construction,
an overlap of all the ‘anded’ terms must now be sought.
The map arrangement shown in Fig. 2 may be used, but
again the 3-dimensional representation of Fig. 3 usually
affords a preferable presentation of the problem.

Whichever form of plotting for a product of sums
equation is used, the plot is not as convenient as that for
expressions given as a sum of products, due to the search
for overlapping conditions necessary in the former.
(This, of course, applies equally to binary systems also.)
Two alternatives are, however, available to eliminate
this form of plotting, namely:

(i) complementing the complete equation by the
extended De Morgan’s theorem, (see Appendix A),
and plotting the resultant sum of products terms;

(ii) algebraically multiplying out and simplifying the
given equation (see Appendix A), with a plotting
procedure for final minimisation if necessary.

Turning now from the minimisation of functions of
three variables by mapping techniques, to functions of
four variables, the difficulty of producing a clear dia-
grammatic representation begins to become too great,
as it does of course with binary systems of five variables.

Two dimensional maps similar to Fig. 2 for a four-
variable function f(4, B, C, D) may be proposed, but
due to the almost complete lack of adjacencies in the
majority of the variables, their use is minimal. Similarly
the three-dimensional representation of Fig. 3 may be
extended to attempt to cater for four variables, giving
the fourth-order hypercube representation shown in
Fig. 5.

This hypercube representation of a f(A4, B, C, D) is
shown only partially in Fig. 5, the D = 0 points only
being shown in full. Any attempt to extend this picture
to show all the points of the D =1 and D = 2 cube,
and all the interconnecting lines between the D = 0,
D =1, and D = 2 cubes becomes completely imprac-
tical. It is impossible to ‘see’ the 81 nodes, 108 lines,
54 surfaces and 12 cubes that are contained in this
complete diagram with any degree of clarity and sureness.
Thus this fourth-order hypercube representation for
f(4, B, C, D) proves completely impractical for mini-
misation purposes.

To conclude therefore, for functions of up to three
ternary variables, a mapping or three-dimensional repre-
sentation is successful and cannot be bettered. Above
three variables, such techniques become impractical,
and alternative methods such as those suggested in the
following section must be sought.

For the minimisation of ternary functions of four or

280

Fig. 5. Hypercube representation of
four-variable ternary function f(A4, B, C, D)

more variables, recourse to an algebraical/numerical
process must be made. As a very first step in this
process, the given equation must be expressed in its
fully expanded ‘sum of products’ form, where each
product term contains all n variables. For example a
term such as 4,B,D, of a four-variable system must be
expanded into its three constituent ‘minterms’, namely
AOBOCODZ + AOBOCIDZ + AOBOC2D29 == 0002 + 0012
-+ 0022 for short.

The general minimisation technique is still that of
searching for groups of three terms that between them
contain one particular variable taking all three values
0, 1, and 2, the remaining (n — 1) variables being
identical in the group. When such a group is found, the
variable taking the three values 0, 1, and 2, is redundant
and may be deleted. The resulting single term is defined
as a ‘prime implicant’.

There is, however, one serious problem which is not
covered by these searches for ‘complete’ variables in
both the binary case and also in the ternary case. It is
possible in both cases for some prime implicants to be
produced which do not themselves combine to form any
further ‘complete’ variable, and yet these terms still
contain some redundancy between them. The given
expression is thus NOT ALWAYS COMPLETELY MINIMISED
by merely making repeated searches for ‘complete’
variables, and listing the resulting prime implicants.

This feature was fully appreciated by McClusky,
Quine et al. in binary working, and often complex sub-
routines were evolved to deal with the problem. In the
ternary minimisation procedure suggested below, it
will also be found that the subroutines necessary to sort

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

out any redundancies in the prime implicants are of
greater complexity than the relatively simpler searches
for complete variables.

As an example of ternary prime implicants which
contain between them some redundancy, consider the
terms B,C,, B|Cy, A;C,, and AB,. These are plotted
in 3-dimensional form in Fig. 6.

From this diagram it is evident that the 4,B, term is
in fact redundant, and that minimisation of the stated
four terms is given by the first three terms alone. Equally
well a ‘surface’ plus three ‘lines’ may contain a redundant
‘line’, for example if ‘surface’ C = 0 had been given
instead of the ‘line’ B,C, in the above example, as of
course ‘line’ B,C, is contained within ‘surface’ C,,.

A schematic representation of the full reduction pro-
cedure is as shown in the tabulation of Fig. 7. The main
searches for ‘complete’ variables on the L.H. side require
no further comment except that, considered dimen-
sionally, we are collecting together at each step, indi-
vidual ‘points’ to form ‘lines’, individual ‘lines’ to form
‘surfaces’, individual ‘surfaces’ to form ‘cubes’, and so
on, as will be readily appreciated from the diagrams of
Figs. 3 ot 5.

Considering, however, in more detail the R.H.
searches for redundant prime implicant terms.

At the first stage where all possible ‘points’ have been
collected into ‘lines’, some ‘points’ may be left over,
not combining with any other pairs of terms to form
lines. It will, however, be found to be an impossibility
for any of such left-over minterms to be redundant, as
no one ‘point’ can be absorbed either by any other
combination of left-over ‘points’, or by any combination
of left-over ‘points’ plus established ‘lines’. Reference
to say the 3-dimensional figure first given in Fig. 3 will
by trial verify this statement. Thus all minterms left
over after the first search for complete variables may be
printed out immediately as being necessary terms in the
minimisation procedure, i.e. are prime implicants that
must appear in the final minimised solution.

Following the next L.H. search, however, when ‘lines’
are combined to form °‘surfaces’, a technique for the
elimination of possible redundant ‘lines’ becomes
necessary. It is impossible for any ‘line’ to be left over
that is wholely included within any single established
‘surface’ term, but a comparison of each left-over term
with three other terms may reveal that the left-over

(1) Expanding into sum of minterm form:

222
(26)

A:2 200
plane
(Decimal
18 to 26)

/A|Cz

122
az

A:l
plane

(Decimal A B,
9t017)
022
81Co | 3 — ®
d - ——siC)
- 4 P
A:0
plane < (0) 7
(Decimal
Oto8) B:2 plane
©)

C:0plane

Fig. 6. Plot of Blcl + B1C0 + A1C2 + AlBl

term is completely contained by the three terms, and is
thus redundant. One such case has been illustrated in
Fig. 6.

On examining all such cases, it will be found that the
‘—’ variable of the redundant term takes the three
possible values 0 and 1 and 2 in the triplet of the three
other terms. The remaining (n — 1) variables of the
redundant term are each identical to the corresponding
(n — 1) variables of the triplet, where ‘—’ in any of the
triplet terms is taken as being equal to 0 or 1 or 2 for
the purpose of this identity comparison.

This comparison technique will detect all such
redundant prime implicant terms. Thus the complete
step-by-step procedure for the minimisation of any
ternary function of »n variables, given schematically in
Fig. 7, is as tabulated in Appendix B, a decimal number
order of tabulation of the given minterms being sug-
gested to aid the initial search for ‘points’ combining to
form ‘lines’.

As an illustration of the above algebraic minimising
technique, consider the following four-variable
expression:

Z = A;CDy + ByD; + A ByC, + A1BoDy + A1 ByCoD,
+ 4,CDy + B,D, + A,B,D,.

A;CDy + ByD; + A,ByC, + A;BoDy + A1ByCoDy + A,C,Dy + B,D| + A,B,D,

2011 + 0002 + 1020 +
2111 1002 1021
2211 2002 1022

0012

1012

2012

0022

1022

2022

1000
1010
1020

+

281

1001 4 1011 + 0201 4 1101
1111 1201 1111
1211 2201 1121

0211

1211

2211

0221

1221

2221

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

(2 and 3) Adding together ‘values’ and tabulating in resultant decimal number order:

DECIMAL TOTAL = 1 2 3 4 5 6 7 8
List of all minterms: 1000 1010 1020 2002 2012 2022 2221 —
0002 1002 1012 1022 2211
1001 0012 1021 1211 1221

1020* | 1111 2201 2211
1011 1201 1121

0201 1111* | 1022*
1101 0022 1211*

0211 0221
2011 2111

(4) Delete all duplications in above tabulation, (= those indicated by *).

(5) Compare each term in above tabulation with all
other terms in next two columns, looking for complete

variables:

1000 1000 0002 0002 1010
1001 1010 1002 0012 1011
1002 1020 2002 0022 1012
100- 10-0 —002 00-2 101-
1001 1001 1020 1002 0012
1101 1011 1021 1012 1012
1201 1021 1022 1022 2012
1-01 10-1 102— 10-2 012
1011 0201 0201 1101 2002
1111 0211 1201 1111 2012
1211 0221 2201 1121 2022
1-11 02-1 -201 11-1 20-2
1021 1201 0022 0211 2201
1121 1211 1022 1211 2211
1221 1221 2022 2211 2221
1-21 12-1 -022 =211 22-1
0221 2011

1221 2111

2221 2211

221 2-11

(6) Tabulating the above ‘lines’ in ‘—’ order:

XXX — XX —X | X — XX — XXX
100— 10—0 1-01 —002
101— 00—2 1—-11 —012
102— 10—1 1-21 —201
10—2 2—11 —022
02—1 —211
11-1 —221
20—-2
12—1
22—1

282

(7) Print out any minterms not combining in (5),
= NONE.

(8) Comparing each term in each column with all
other terms in the same column, looking for complete
variables:

100- 100 002 10-1
101- 101 102 11-1
102- 102 202 121
10— 10— 02 1--1

02-1 1-01 -002 -201
121 111 -012 -211
2.1 121 =022 -221
21 1--1 02 21

(9) Tabulating the above °‘surfaces’ in ‘—’ order,
deleting any duplications:
XX—— | X—X— | —=XX— | —=X—X |X——X| — —XX
10-- -0-2 | 1--1
-2-1

(9a) Left-over ‘line’ terms of (6) that do not contribute
in forming ‘surfaces’ = 2 — 11 only.

Now no triplet of terms before the last minimisation,
with 0, 1, and 2 in the second variable position and
complete agreement of all three other variables, is
present.

.-. This left-over term is an irredundant prime
implicant in the final minimisation.

(10) No further complete variables are available in
tabulation (9). This therefore is the final minimisation,
as these terms by themselves contain no redundancies.
Therefore given expression simplifies to:

Z = 10— 4+ —0-2 + 2-1 + 1——1 + 2-11
= ABy + ByD, + B,Dy + A, Dy + 4,C,D;.

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

NOTE: Function must first be expressed in ‘sum of minterms’ form, e.g. Z = f; + f> + f3 + . . . , where

f1, f2, f3, etc., each contain all » variables.

1. Establish and list all unique ‘points’.

= X ABCDE

2. Look for and list all combinations of ‘points’ that
give a complete variable 0, 1, and 2, = establish all
unique ‘lines’.

——— 2(a) Print out all ‘points’ not combining to form

‘lines’ = irredundant terms.

e.g. AoB1*D>E), etc.

3. Look for and list all combinations of ‘lines’ that
have a further complete variable 0, 1, and 2, =
establish all unique ‘surfaces’.

¥
e.g. AoB1*Dy*, etc.

4. Look for and list all combinations of ‘surfaces’
that have a further complete variable 0, 1, and 2, =
establish all unique ‘cubes’.

|
e.g. *B1*D,*, etc.

5. Look for and list all combinations of ‘cubes’ that
have a further complete variable 0, 1, and 2, =
establish all unique fourth order ‘hypercubes’.

¥
e.g. ***Dy* etc.

6. Repeat this complete variable search for a total of
n times where n = number of variables in the origi-
nal terms, or when no further complete variables
are found.

——— 3(a) Compare all ‘line’ terms not combining to form

‘surfaces’ for redundancies. Delete all such
redundancies and print out all remaining terms
= irredundant terms.

——— 4(a) Compare all ‘surface’ terms not combining to

form ‘cubes’ for redundancies. Delete all such
redundancies and print out all remaining terms
= irredundant terms.

——— 5(a) Compare all ‘cube’ terms not combining to form

‘hypercubes’, for redundancies. Delete all such
redundancies and print out all remaining terms
= irredundant terms.

———> 6(a) Repeat this redundancy search between each

step, printing out all nonredundancies = irre-
dundant terms.

Final Minimum Solution of original Function = Sum of all the irredundant terms of the R.H. sub-programs,
= sum of all these Prime Implicants.

Fig. 7. Reduction procedure for ternary functions of n variables

The above minimisation technique will thus be seen
to be a large number of individually simple searches for
specific arrangements and correspondence of variable
values. It is thus a relatively simple exercise for any
digital computer.

Conclusions

The minimisation techniques discussed above show a
close relationship to the more familiar techniques asso-
ciated with binary functions. The same problems, such
as the inability to map multi-variable functions, occur
more forceably in ternary working than in binary, but
these problems are fundamentally identical.

The numerical techniques as adopted above for the
detection and hence elimination of redundant prime

References

implicants produced during a numerical minimisation
procedure, can be applied equally to detecting redundant
binary prime implicants during a Quine or McClusky
binary minimisation procedure. As only the two values
0 and 1 are present in the binary case, the procedure for
detecting redundant prime implicants is somewhat
simplified.1?

Both the ternary and the binary minimisation cases
are in fact particular cases of the minimisation of m-
valued logic functions. The numerical minimisation
technique for m-valued functions requires repeated
searches for variables taking the values 0, 1, 2, . . ., (m-1),
with the elimination of redundant prime implicants
undertaken in a manner similar to the binary and ternary
cases.!?

1. Verrch, E. W. (1952). A Chart Method for Simplifying Truth Functions, Proc. Assn. for Computing Mach. Conf., May

1952, pp. 127-133.

NoUMAWN

202, and pp. 256-259.

(=]

pp. 163-185.

283

. KARNAUGH, M. (1953). A Map Method for Synthesis of Combinational Logic Circuits, Trans. A.I.E.E., Vol. 72, pp. 593-599.
. QUINE, W. V. (1955). A Way to Simplify Truth Functions, American Mathematical Monthly, Vol. 62, pp. 627-631.
McCLuUskEy. E. J. (1956). Algebraic Minimisation and the Design of Two-Terminal Contact Networks, M.I.T. Thesis.

. Staff of Harvard Computation Centre (1951). Synthesis of Electronic Computing and Control Circuits, Harvard U.P.

. FLEGG, H. G. (1959). The Manipulation and Minimisation of Boolean Switching Functions, College of Aeronautics Thesis.
. Hursr, S. L. (1968). Semiconductors Circuits for Three-State Logic Applications, Electronic Engineering, Vol. 40, pp. 197-

. Post, E. L. (1921). Introduction to a General Theory of Elementary Propositions, Amer. Journal of Mathematics, Vol. 43,

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

9. BERNSTEIN, B. A. (1924). Modular Representations of Finite Algebras, Proc. 7th International Congress of Mathematicians,

Toronto, Vol. 1, pp. 207-216.

10. RoSsENBLOOM, P. C. (1942). Post Algebras: Postulates and General Theory, Amer. Journal of Mathematics, Vol. 64, pp. 167-

188.

11. WeBB, D. L. (1953). Generation of any N-Valued Logic by one Binary Operation, Proc. Nat. Academy Sciences, Vol. 21,

pp. 252-254.

12. ROHLEDER, H. (1954). Three Valued Calculus of Theoretical Logics and its Application to the Description of Switching
Circuits which consists of Elements of Two States, Zeitschrift fiir Augewandte Mathematik und Mechanik, Vol. 34,

pp. 308-311.

13. CHEN, C. Y., and Leg, W. H. (1957). Several Valued Switching Circuits, Trans. A.I.E.E., Vol. 25, Pt. 1, pp. 278-283.
14. Vacca, R. (1957). A Three-Valued System of Logic and its Application to Base Three Digital Circuits, UNESCO/NS/ICIP/

G.2.14,

15. MUHLDORF, E. (1958). Ternidre Schaltalgebra, Arch. Elektrischen Ubertragung, pp. 138-148 (in German).
16. HIGONNET, R., and GREA, R. (1958). The Logical Design of Electrical Circuits, McGraw Hill.
17. HursT, S. L. (1966). Boolean Minimisation Techniques, I.E.E. Electronics Letters, Vol. 2, No. 8, p. 291.

Appendix A

An extension of binary algebraic identities to ternary functions

The fundamental identities associated with two-state
Boolean operations may be extended to cover three-state
(ternary) working, as shown below. A close parallel will be
seen to exist between established two-state identities and
these three-state identities, but the presence of the third
possible state in the latter often makes the application of
these identities more complex in manipulation and mini-
misation problems.

Elementary propositions

Ag+ Ag = Ay
(@ A+ A = A4,
A2+A2=A2
[Ag.Ao = Ay
(b)) < A;.4, =4,
| 4.4, = 4,
(C) A0+A1+A2=1
AO‘A1=0
Ao.A2=0
@ N 4 4y,=0
LAO'AI'A2=O
[(Ag= A + A4,
© 11‘11:/40‘*'142
Ay = Ay + 4
(f) < A4 +1=1
L A +1=1
er.1=A0
(&) § 4,.1=4,
A2.1=A2
A0+0=A0
() < A +0=4,
Ay +0= 4,
A()O:O
() < 4,.0=0
A20=0

284

In the above list of elementary propositions, the numbers
‘0’ and ‘1’ occurring as a operator or as a resultant may be
interpreted as ‘O’ = nothing or ‘zero class’, and ‘1’ = whole
complement or ‘universal class’ in the usual manner.

Associative and commutative laws

k) A+B)+C=A+ B+ 0
() (A.B).C=A.(B.O)
(m) A+ B=B+ A
(n) A.B=B.A

Distribution laws
(p) A.(B+C)=A.B+ A.C
(g9 A+ B.C=(A+B).(4+ O)

Extended De Morgan’s theorem
" A+B+..)=AB. -

() A4.B.---)=A+ B+

As an example of these final complemented identities, the
complement of the function (4, + B, + Cy) is:

(A, + B, + Cp) = 4;. B,. Gy,
= (Ao + A1) .(By + By) (Cy + Cy),

which may be multiplied out if desired to give the following
result in minterm form:

AyByCy + AyB,C; + A,ByC, + A,B,C; + AyB,C,
+ AgB,C, + A,ByC, + A,B,C,

The above identities may be employed to minimise ternary
algebraic equations in a manner closely analogous to binary
working. For example, consider the ternary equation:

(Al + .B] + Co)(A2 + Bl + Co).(Ao + B2 -+ Cz).

Multiplying out and applying the ternary identities we
obtain:

(4; + By + Co)(A; + By + Co)(A4y + B, + Cy),

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

= (41d; + A1B, + A4,Cy + B4, + B B| + B,C, + Co4,
+ CoBy + CoCo)(A4p + B, + Cy),
= (4,By + A,Cy + B4, + By + B,Cy + CoA; + CoB,
+ Co)(4p + B, + Cy),
= AgA;B; + AyA,Cy + ApB1A4; + AgBy + AyB,C,
-+ A0C0A2 + AOCOBI + AOCO
+ ByA,By + ByA,Co + BB A, + B,B, -+ B,B,C,
+ ByCody + B,CoBy + B,C,
+ CA4;B; + C4,Cy + C3B1A4; + CBy + C,B,C
+ C,Cody + CyCoBy + CoCo.

Deleting all further inadmissable (‘zero’) terms in the above,
.e. AgA By, ApA,C,, etc., the remaining terms are:

+ B,Co + AgCo + Cr4,By + CB14; + C,By,

= AOBI(I + CO + Co) + B2C0(A1 + A2 + 1) + A0C0
+ BiCy(4; + A4, + 1),

= AoBi(1) + B,Cy(1) + 4,Cp + B, Cx(1),
= A()Bl + B2C0 ‘+‘ AOCO + B1C2.

This final result cannot further be minimised by algebraic
means. However, precisely as in binary minimisation tech-
niques, such ternary algebraic reductions do not always
guarantee a minimum solution, and one or more of the final
terms may still be redundant. Graphical or numerical search
procedures should be applied to check for such redundancies.

The identities and algebraic manipulations discussed
above equally well may be extended to higher-valued functions
than the ternary case here considered.

Appendix B
Minimisation procedure for function Z = Z ABCDE . ..

1.1 Expand each term of given OR function into all its
minimum polynomials or ‘minterms’, = expand to give all
‘points’. (e.g. AlBlClEl = AlBlCIDOEl + AlBlCIDlEl
+ A,B,C\D,E, = 11101 + 11111 + 11121 for convenience).

1.2 Add together the values of each of the n variables in
each minterm and hence establish an order of the minterms
in accordance with these decimal number totals (e.g. 21120
= ‘6’).

1.3 Tabulate all minterms in columns, the column order
being these decimal totals 0, 1, 2, . . ., 2n:

e.g.
0 1 2 ’ 3 —\ 2n
— |o1000| — 11100 ‘
02010

1.4 Delete any duplications in each column, = establish-
ment of all unique points.

1.5 Compare each term in each column with all terms in
the next two higher columns, looking for one variable taking
the values 0, 1, and 2 in the three terms being compared,
with all other (n — 1) variables identical. Note: Any one
term may contribute up to » times in this correspondence
search. (This is looking for 3 ‘points’ — 1 ‘line’.)

1.6 Tabulate out each ‘line’ term so found in columns
corresponding to the position of the complete variable, with
‘—? or some other chosen symbol or number other than 0 or
1 or 2 in place of the complete variable; (= tabulation of all
unique ‘lines’; suggest the symbol ‘— is used to represent
the complete variable O or 1 or 2).

1.7 Print out all minterms not combining to form any
‘line’, = necessary IRREDUNDANT PRIME IMPLICANTS.

1.8 Compare each ‘line’ term of tabulation (6) with all
other terms in the same column, looking for any one variable
in the terms being compared that takes the value 0, 1, and 2,

285

with all other (» — 1) terms identical; (= looking for 3
‘lines’ — 1 ‘surface’).

Note: Any one term may contribute up to (n — 1) times
in this search.

1.9 Tabulate out each °‘surface’ so found in columns
corresponding to the positions of the complete variables,
with ‘—’ or other chosen symbol in place of the second
complete variable. Delete any duplications in each column;
(= establishment of all unique surfaces). Then:

(a) Complete the subroutine program (2) detailed below,
to eliminate any redundant ‘line’ terms left over after
this collection together of ‘lines’ into ‘surfaces’.

(b) Print out all remaining ‘line’ terms following this
elimination check, = necessary IRREDUNDANT PRIME
IMPLICANTS.

1.10 Compare each ‘surface’ term of previous tabulation
with all other terms in the same column, looking for any one
variable in the terms being compared that takes the value 0,
1 and 2, with all other (n — 1) terms identical; (= looking
for 3 ‘surfaces’ — 1 ‘cube’).

Note: Any one term may contribute up to (n — 2) times in
this search.

1.11 Tabulate out each ‘cube’ so found, in columns corre-
sponding to the positions of the complete variables, with ‘—’
or other chosen symbol in place of the third complete variable.
Delete any duplications in each column, (= establishment of
all unique cubes). Then:

(a) Repeat subprogram (2) below to sort out redundant
‘surface’ terms. Print out all non-redundant ‘surface’
terms = necessary IRREDUNDANT PRIME IMPLICANTS.

1.12 Repeat (10) and (11) until no more complete variables
0, 1 and 2 are found in this search for triplets. Print out all
IRREDUNDANT PRIME IMPLICANTS at end of each subprogram.
Procedure to finish on a subprogram routine.

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

Ternary equations

2. Subroutine program between above Steps 9 and 10, 11
and 12, etc.

2.1 For each term left over after the completion of each
main minimisation search, look at ALL terms prior to this
last minimisation search, looking for a triplet of terms with 0,
1, and 2 in the position of any ‘—’ variable of the left-over
term.

2.2 If one or more such triplet of terms can be found, check
agreement of all remaining (n — 1) variables of each term of
each triplet with the left-over term, where (i) any additional
‘—? variable in the left-over term must match exactly with
a ‘—"variable in each of the triplet terms, and (ii) all remaining
0 or 1 or 2 variables of the left-over term must match exactly
with the corresponding variable in each of the triplet terms,

where ‘—’ in any triplet term is taken as equal to 0 or 1 or 2
as desired.

2.3 If such full agreement of all these (» — 1) variables of
a triplet and the left-over term is found, the left-over term is
redundant and should be deleted.

2.4 If no triplets or matching of triplet variables can be
found, the left-over term is irredundant and must therefore
be printed out as a necessary IRREDUNDANT PRIME IMPLICANT.

(Note: Having found redundant and deleted a left-over
term, this term is no longer available in the list of ALL terms
prior to the last minimisation, see 2.1 above. Thus if pro-
cedures 2.1 to 2.4 above have to be repeated for further left-
over terms, any deleted term is no longer available in these
subsequent search procedures.)

Book Review

Machine Intelligence 3. (Ep.) D. MICHIE, 1968; 405 pages.
(Edinburgh University Press, 70s.)

The first attempts to get machines seeking proofs for
mathematical assertions were aimed at putting mathematicians
out of business and remedying Fermat’s deplorable careless-
ness. Ten years and a few pages of college mathematics later
the day nevertheless looks not far off when theorem-proving
will indeed be a workaday occupation for computers in banks
and universities, but not to lay Goldbach’s ghost. The light
is slowly dawning that even a modest inferential capacity
would be an immense improvement on today’s lumpen
responses, and that mathematics is not the only illogical
human activity that lends itself to analysis in the terms of
current logic.

In five papers of this book leading participants in the
theorem-proving field write about techniques for proof-
seeking, especially J. A. Robinson and others about develop-
ments of Robinson’s ‘resolution principle’. To make a
comparison with another field, their work is like the develop-
ment of techniques for dealing with simultaneous linear
constraints. For applications we must await the next instal-
ment (at least). This comparison is likely to be justified when
proof-seeking acquires a similarly central position to that
now occupied by linear programming.

The analogy doesn’t stop here. Operational research began
as the ragbag for unclassifiable applications of mathematics,
and it spawned linear programming as its earliest specific
methodology. For OR the search for self-identification is
now over (or just too boring) and its boundaries have
hardened. The focus for the unclassifiable has shifted from
the analysis of corporate behaviour to the analysis of
individual behaviour. The mantle of OR seems to have
fallen on artificial intelligence (AI), although the shift is by
no means complete, witness here Varshavsky’s survey of
recent Russian work in Collective Behaviour and Control.

Theorem-proving started as an application-study and is
becoming a foundational tool. Another less surprising such
tool is the exploration of trees and graphs. Also, reaching

286

out unsurely towards the proof-seeking techniques, is the
business of formulating in logic topics that might one day
yield to mechanical inference-making, for example Laski’s
and Park’s discussions of data-structures. These shade off
from logic into programming because programming languages
seem destined to evolve towards logic. Al can take a lot of
the credit for this. It has always excelled at spot-lighting the
deficiencies that most of us merely suffer inarticulately (see
Burstall’s ‘Alternative Expressions’, Foster’s ‘Assertions’).

As ever more tricks are found for introducing implicit
forms of description instead of the explicit forms forced on
us by strictly algorithmic languages, something has to be
done to clean up the mess, and logicians are technology’s
sanitary inspectors.

If AI has inherited some of the angst of OR it has also
inherited a sympton—polarisation between methodological
preoccupations and undigested engineering descriptions.
This book bridges the gap with some thoughtful case-studies,
especially Amarel exhibiting the effect of alternative formu-
lations of a problem (missionaries and cannibals).

One serious study for its own sake is the automatic English
parser of Thorne et al. that does not rely on a complete
dictionary of words encountered. Language processing is
another application area that has won independence.
Perhaps Al is destined to remain fuzzy because each study
that becomes well-defined claims autonomy. Some practi-
tioners might draw the bounds so tight as to include only one
piece of .work in this book—Hilditch’s automatic inspection
of photographs of chromosomes.

Fortunately this volume represents no such narrow view.
The preface acknowledges the difficulty of assimilating ‘the
interconnections of such a ramifying field of subject matter’.
Reading the book brings home how important doing just
that is going to be as AI crystallises out into techniques
and application-areas the shapes of which are not now
predictable.

P. J. LanDIN (London)

¥20Z Iudy 61 uo3senb Aq 26€9L1/222/S/L L/eIRIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod

