Pattern classification as interpolation in /N dimensions

By P. A. V. Hall*

Pattern classifications are considered equivalent to computing a special function, and the problem
in designing a machine is to reconstruct and approximate this function given only a finite set of
samples from the function. Interpolation theory is applied to the problem and a variety of realisa-
tions are suggested. While the theoretical viewpoint is new and general, the realisations are
shown to be equivalent to many existing solutions; however, this theory allows a systematic
approach to design, with a firm and general background to convergence and error.

(Received April 1968)

It is the intention here to develop a new approach to
pattern classifications, to develop a general mathe-
matical formalism for learning and pattern recognition.
The problem mainly considered is that of classifying
static spatial patterns, and particular reference is given
to visual pattern recognition, though the basic theory is
extendible in an obvious way to all situations of static
pattern classification.

Starting with the usual model for pattern classifica-
tions, the problem is shown to be equivalent to inter-
polation as studied in numerical analysis. Several
formulae for pattern classifications are thus obtained,
and realisations are suggested. The formalism jis then
shown to be equivalent to existing approaches to classi-
fications (in particular, Nilsson, 1965), but is more
general in the sense that any classification can be syste-
matically tackled, and in such a way that error rates
can be kept to any arbitrarily small limit.

‘The basic model

The usual model of a visual classification system is
assumed. Patterns are projected to a retina where n
quantities are measured: computations on these n values
produces a further ordered set of numbers on which a
decision is based (see Fig. 1).

Patterns are distributions of light intensity over a
two-dimensional ‘visual field’ (and thus the totality of
patterns constitutes a function space,

D = {d(x, y): (x, y)eV C R?}).

The pattern is usually projected by an optical system
on to some image field to form an image pattern. (Note:
because of the nature of optical systems there is neces-
sarily a degradation in the image; the functions of the

image-pattern space are band-limited in spatial Fourier
components (see Gabor, 1955).)

Measurements, » in number, are made upon the
image-pattern, yielding n quantities which represent the
pattern. These measurements are usually made by a
photo-mosaic, often rectangular. We thus obtain a
point in an n-dimensional vector space, which vector
space provides an approximation to the original function
space. This approximation improves as the number of
measurements, #, is increased; and it is clearly necessary
that n should not be too small, while on the other hand,
if n is too large, the system would become unnecessarily
expensive. For the purposes of this paper we assume
that a sufficient value of n for the problem at hand is
known (from psycho-physical experiments a 20 x 20
mosaic is often considered sufficient for character recog-
nition: Uhr and Vossler (1961)), and that this repre-
sentation is such that there is no loss of information
(that is, if two light distributions are distinct as pattern-
types, they remain distinct as points in the n-dimensional
approximation space).

From these n quantities we wish to make one or more
computations which will yield the classification of a
previously unseen pattern, and herein lies the crux of
the problem: what computations do we make? Classi-
fications in mathematics are symbolised by charac-
teristic (or indicator) functions—the function yields a
value 1 if the object belongs to the class and a value 0
otherwise (see, for example, Sz.-Nagy (1965), p. 14).
Thus here we hypothesise as many characteristic func-
tions as there are pattern classes. If we knew explicitly
these characteristic functions, our problem would be
trivial—but instead we have an implicit definition of the
functions within ourselves. We can experiment on our-
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Fig. 1. Basic model for visual pattern recognition
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selves and thereby obtain a set of samples from the
characteristic functions.

An alternative view of the set of computations required
is the discriminant function approach: we wish to per-
form one computation per pattern-class and then choose
the maximum value to determine the classification (cf.
Nilsson, 1965).

We unite the ideas of the preceding paragraphs and
reduce our model and problem as follows:

Model: A function d(x, y) representing the light distri-
bution in the visual field is mapped to an n-dimensional
space without loss of information; the n-dimensional
pattern after the retina is mapped by an unknown
function f to m quantities, one for each class, to give a
point in an m-dimensional ‘decision’ space in which
there is a standard decision procedure: this standard
decision procedure could be either ‘select the maximum’,
or select all those classifications whose value is greater
than some threshold (say %); the former resolves all
ambiguities and could further allow for uncertainties in
regions between classifications, and the latter permits
ambiguities, which may be desirable.

Problem: We are given a set of samples (N in number)
of the function f*(f: R* — R™) and must later use these
to guess at the function values given some arbitrary
pattern (a point in R”). That is, we must interpolate
between the sample points.

The samples are obtained as previously indicated: by
objective experimentation in the real world. Sample
patterns are presented to a person, or persons, and the
classification point found by determining the set of m
values, 0 or 1, indicating the classifications to which the
pattern belongs.

The solution of the problem is now in a sense trivial,
for interpolation in one dimension has been well-studied
in numerical analysis, and the ideas generalise very
readily to many dimensions. We turn now to this
subject.

Interpolation in » dimensions

A function f: R"— R™ can be considered as m
functions fi, f5, . . ., f,» €ach mapping R"to the real line,
and we need only consider interpolation for each
function separately.

A general solution to the interpolation problem,
biased somewhat to our problem, is given below. The
particular case of one dimension can be found in any
standard textbook (e.g. Lanczos, 1957; Hamming, 1962);
interpolation in two dimensions has also attracted some
interest (Clenshaw and Hayes, 1965).

Wewish to interpolate for afunction f?(R*-R) given a
set of samples from the function {(x;, f(x,)): k=1, 2,...,N}.
Let the samples be drawn from some subset X of R”,
and let p be some measure defined on X with u(X)
finite (for bounded sets X, p will in general be the usual
interval measure). The samples must then be distributed
according to this measure u, either at ‘nodal points’ of
some ‘mesh’, or randomly with respect to the probability
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measure derived from p by setting p(Y) = u(Y)/u(X)
with ¥ C X. Let w(x) be a weighting function defined
on X(w(x)>0). Let {$(x):i=0,1,2,...} be a
complete orthogonal set of functions defined on X,
orthogonality being with respect to both weighting
function and measure.

[ dipwd =0 if i~ ).
X

For later use in interpolation (or any analytic process)
we approximate f by a linear combination of the first
M + 1 of the ¢,’s.

M
f=~g =i=20 a;b;.

The coefficients a; are obtained in such a way that they
minimise some criterion of error (usually a least squares
fit at the sample points). Clearly for non-triviality
M+ 1< N

We consider firstly the least squares criterion, and
several cases arise.
(i) The functions ¢; can be chosen so that they are
orthogonal over the sampling points: this means either
carefully selecting the sample points given the functions,
or vice versa. Then

B ronn) =0 if i#]
and to minimise

T, (g0 — S5 (e
we compute the coefficients by the formula

3 4GS Gwn)

a; =

N 1
k§1 (ﬁ%(xk)w(xk)

This case is not of much interest here, since the careful

selection of sample points, or the construction of special
functions, is impractical.
(ii) No careful selection of sampling points is made and
sampling is random. Again we go for the least squares
fit, and minimise the weighted sum of the squared
deviations at the sample points. Thus

) N M )
Tai [kgl W) (S5 _j=zo a;bi(xi)) :I =0

i=0,1,..., M.
This leads to M + 1 equations in M -+ 1 unknown a;’s.

These are known as the normal equations. In matrix
notation these become:
®b = c (2
where
bj=a;_;  the unknowns
N
AR S S Vs )
N
Dy =k ] bi— 1(x) Py 1(xi)W(x,)
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Solution of these equations will yield the requisite
coefficients.

(iii) Rather than solving the above simultaneous equa-
tions, we may hope meaningfully to set the coefficients by

k§1 S biCa)w(xy)

a;, =

N (3)
k§1 ¢%(xk)w(xk)

While this is the same as formula (1), our viewpoint is
radically different. Effectively here we assume that the
off-diagonal terms of the matrix O in the normal equa-
tions (2) are negligible: in fact it can be shown that
these do converge to zero as the number of samples is
increased with a properly conducted sampling procedure,
because of the orthogonality of the functions {¢;}.

(iv) If the ¢;’s are normal as well as orthogonal, then
(w(X)/N) times the denominator in (3) tends to unity
as N tends to infinity. Thus for orthonormal ¢; we
could use

N
a, =5 3 fe)diCoomino. @
k=1

This converges to the integral which would define a; if
we knew the function f explicitly (see Hammersley and
Handscomb, 1964).

Our interest in interpolation for pattern classification
is mainly concerned with random sampling, determined
by the measure n. We now note that we can allow the
weighting function w(x) to generate a measure on X

according to the simple prescription w(Y) =J w(x)dp
Y

for all YC X, when in all our preceding formulae the
explicit appearance of w(x) can be removed and sampling
can be conducted randomly with respect to the prob-
ability distribution p(Y) = w(Y)/w(X): w now plays
the identical role to that formerly played by u. These
two views are interchangeable and in both cases w, or
the combination of w(x) and u, give a measure of con-
fidence in and a measure of the expected frequency of
occurrence of the various samples. Clearly there is
some advantage in sampling with respect to w, if this
can be achieved.

Hence we list formulae (5) and (6) to correspond to
formulae (3) and (4).

N
kgl S )bi(x)
a4 =—x§ ®)
PIRHEN
k=1
sampling with respect to the measure w.

w(X) X

a; = Tkglf () i(xi) (6)

sampling with respect to the measure w.

With the preceding understanding of measure and
weighting and random sampling, the sums converge to
integrals, and as the number of samples is increased all
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of (2) to (6) converge to the overall least squares fit:
thus as the number of functions used in the approxi-
mating expansion is increased, with M —+ 1 less than or
equal to N, the approximating function converges to
the unknown function ‘in the mean’. Given any arbit-
rarily small number e there exists some finite approxi-
mation (that is, an N and an M) such that the weighted
sum of the squared deviations (or ‘variance’) is less
than this e. Moreover, if we denote by T(e) the set of
all points such that the deviation or error |f— g| is
greater than e, then the measure of this set can be
shown to converge to zero with the variance. For
threshold decisions of threshold 4, 7(3) is just the set
on which errors occur, and thus w(7(3)) is the error-
rate. Consequently we conclude that the error-rate
can be made arbitrarily small. The condition that the
function f must fulfil is that it be square-integrable: for
characteristic functions this means that the classification
set must be measurable. (See Sz.-Nagy, 1965.)

NotE: We can in principle preselect our sample points
to fit some mesh (which depends upon the measure and
weighting and orthogonal functions), and work syste-
matically through the points. The problem is that we
have no method for continuously increasing the number
of samples with this approach, though by working from
mesh to finer mesh convergence is still assured: however,
in proceeding to a finer mesh we must either start from
scratch again, or make a very large jump in the number
of sample points.

(v) Finally, we see that in formulae (4) and (6), the
factors u(X) and w(X), and the division by N, are not
necessary for correct recognition when used in a pattern
classifier and can be eliminated (though we must make
due allowances for this with threshold decisions). Hence

N
a; = k§1f () i(xi)wlx) )
sampling with respect to measure wu.
N
a; =k§1f ()i (%) (®)

sampling with respect to measure w.

Other error criteria

The least squares error criterion, while the most
common, is not the only one possible. Two other
criteria will now be discussed.

We could hope to minimise the maximum error.
Clearly such an aspiration only has meaning for the
approximation by continuous functions of continuous
functions; for at jump discontinuities we necessarily
must have an error of at least half the jump. So let us
suppose that we do not in fact measure a characteristic
function directly, but rather a probability distribution
p4(x), the probability that a pattern x will be classified
in category A4, and that previously we obtain the charac-
teristic function from this by a threshold operation,
classifying x in 4 if p ,(x) is greater than 4. Assume that
p4(x) is continuous and suppose that we have approxi-
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mated p,(x) uniformly to within €(<4%) by a function
g(x). We know that this is always possible under
appropriate conditions, by the Weierstrasse-Stone
Approximation Theorem (Sz.-Nagy, 1965). Then we
see that in areas of uncertainty (mostly near the
boundary) our use of the approximation is also uncertain:
for patterns where p,(x) is within the interval
[3 — €, + €], we are prone to errors, but outside this
we can guarantee correct classification.

Thus a minimax approximation is very meaningful,
for we can constrain the errors to lie in regions where
the classification is of doubtful validity anyway: with
normal least squares methods we have no control over
where the deviations occur. To find the minimax fit,
we simply use the n-dimensional version of the technique
used in one dimension; that is, we use Chebyshev
polynomials in a least squares fit. For us this means
using the generalised Chebyshev weighting (on a bounded
interval): we can then use any of formulae (2) to (8) to
obtain in the limit the minimax fit. However, if the
real distribution of patterns is not Chebyshev, then we
do not find a minimum of variance when later employing
a realisation. Convergence is as previously discussed
for least squares.

Minimax and least squares are the principal error
criteria of numerical analysis: but here our complete
problem goes beyond numerical analysis, for we always
follow the approximation by a decision procedure, and
the figure of merit for the total system is the error-rate
(or a weighted ‘cost’ version of it): for us the error rate,
as assumed previously, is the measure of the set in which
errors occur.

Thus we are led to postulate an optimal error criterion
for noiseless threshold decisions, for we do not care
what the error in the approximation of the charac-
teristic function is, as long as it is less than a half. Let
us define a function ¢(x) on the real line such that
q(x) = 0 if |x| <% and ¢g(x) = 1 otherwise. If we are
seeking an approximation of the form

M
Cu(x) ~ g(x) = Eo a;i(x)

and we minimise, with respect to the coefficients,

[ 4(Ca — gy
°rk§l q(C 4(x;) — g (x))w(xi)

we will obtain optimal values of the coefficients. We
can alternatively regard the process as minimising the
probability that the error (C,(x) — g(x)) is greater than
a half.

In order to be able to use differential techniques to
find the minimum, we would like an analytic approxi-
mation of g(x). We note that the function sequence
{@ —exp[— (@x¥»7]) :n=1,2,3,...} converges to w(x)
and that the first order approximation leads to the least
squares fit. For n = 2 we minimise the 4th moment of
the error distribution and can find an iterative scheme
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to calculate the coefficients. Similarly for higher order
approximations. Such iterative systems, unless they
converge very rapidly, are likely to be very costly, and
only in exceptional circumstances could they be justified.
We conclude that least squares techniques are
generally preferable, for their mathematical elegance
and simplicity of realisation. Minimax fits using
Chebyshev polynomials gives us a technique for con-
straining errors to lie near the boundary of the classi-
fication sets. These criteria do not give the optimal
decision procedure if error-rate is the correct per-
formance criterion, but we have seen that all criteria
converge together, and that least-squares is a first order
approximation to the minimisation of error-rate.

Orthogonal functions in » dimensions

It is important to consider possible sets of orthogonal
functions in R*. Of most interest here will be the poly-
nomials, where a given subset of R” and a suitable
measure will be associated with a system of ortho-
gonal polynomials. The easiest n-dimensional poly-
nomials to generate are those formed from the product
of one-dimensional orthogonal polynomials. If
{m(x):i=0,1,2,...} are orthogonal and complete in
one dimension, then the polynomial system

{mi(x)mi(x5) ... i (x,) 0,00, 0, =0,1,2,...}
will be orthogonal and complete in » dimensions with
the degree of a polynomial being (i; + i, + ... + i,).
We need some system for ordering the polynomials,
and it would be most meaningful for the ordering to
reflect the ‘significance’ of the functions. In the above
manner we generate n-dimensional Chebyshev poly-
nomials. Alternative to this scheme we can start from
any complete function set and extract an orthogonal set
by some suitable procedure (cf. Weisfeld, 1959).

There are n? polynomials of degree p, and thus the
number of functions to be considered increases astro-
nomically with increasing p. This is seen to be the
major problem in engineering pattern recognition
systems: how do we reduce the number of functions
(i.e. ‘features’) to a manageable small quantity? Intuitive
insights can help us here though they are not essential,
and constitute information additional to that of the
samples. For example, for general functions one can
use a ‘localness’ hypothesis to limit one’s interest only
to functions whose arguments come from restricted
locality or ‘receptive field’ of the image and photo-
mosaic (such as is done with the ‘operators’ of Uhr and
Vossler (1961)).

Polynomials involve algebraic operations and are thus
of value for digital realisations. Analogue devices can
realise transcendental functions readily and naturally,
and one should consider orthogonal function systems
appropriate to the means of realisation. In the next
section the topic of realisations (that is, the actual
designing of a particular system) is taken up in general
terms, assuming that the function system has been
determined.
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Realisations

The preceding sections provide theoretical guidance
for the designing of machines which will recognise
patterns. There are three approaches we can take:
these correspond roughly to what have come to be
known as parametric, learning, and adaptive systems.

The first possibility is that we use fixed number of
samples and use one of the formulae (2) to (8) to com-
pute the coefficients a;. We can use any orthogonal
function system we choose (bearing in mind that there
is an implicit relationship between the procedure
whereby we acquire the samples, and the measure and
weighting function which define the function system)
and can readily perform the analysis using a digital
computer employing standard numerical techniques.
In effect we have a number of parameters which are to
be estimated from the samples.

Subsequently these parameters are used in building
the system: the form of the system follows that of the
model postulated at the start (Fig. 1).

It may not be desirable to use a fixed number of
samples. We see that using equations (3) to (8) the
extension to a variable number of samples is trivial,
and we can design pattern classifiers with sequential
decision properties. We can interpret the process of
adding another sample to our set as ‘learning’ and at
any stage the machine can classify as best as it is able
with the material that it has learnt so far. A canonical
realisation using formula (8) is schematised in Fig. 2.
Other realisations might make learning local and
autonomous at the a;’s.

It is only for formula (2) that the extension to variable
N is problematic. Formula (2) involves the solution of
the normal equations, and this is essentially a two-stage
process: initially the equations are set-up from the
samples, and then they are solved. Adding another
sample may appear to throw away the preceding solu-
tion, but this can be circumvented by using an iterative
technique for solving the normal equations. The
iterative technique proposed is the Jacobi method of
simultaneous displacement. The matrix equation (2)
is replaced by the system

b+ = DXb™ 4 Dc

where D is diagonal matrix comprising the elements

N -1
dy=( T Hatawx))  j=12.. M+1
k=1

and X is the matrix with diagonal elements zero and off-
diagonal elements

N
Xij= _k§l¢i~ 1) 1 edw(x) 1,j=1,2,..., M+ 1.

Thus ® = D-! — X. cisasin (2).

This provides a linear dynamical system whose state
yields the latest value of the parameters for the recog-
nition process. Learning a new pattern means up-dating
the matrices D and X, and the vector ¢. For orthogonal
¢; this scheme is not very interesting for the elements in
X converge to zero; however, where the functions are
not orthogonal (or equivalently, where the sampling
process does not match the measure) the normal equa-
tions still give a least squares fit while the other formulae
break down, and this scheme could prove useful in some
circumstances.

The previous systems have one serious drawback. As
the learning progresses and the number of samples
increases, the numbers representing the state of learning
or memory, grow without bounds. Some method for
preventing this growth needs to be proposed; we must
arrange to ‘forget’ events in the distant past. This then
creates a further possible advantage for we have a
memory of finite duration which means that changes in
classification which occur over a long period are allowed
for. In a sense the system is adaptive, and this adap-
tivity is often a design objective in its own right. How-
ever, we accrue the serious disadvantage that our
techniques no longer converge: after a very long learning
process we do not get arbitrarily close to the best fit
parameters, but rather our estimates are distributed
about the best parameters (but this is also true for any
finite sample in the parametric and learning cases above).
One possible forgetting technique is to store explicitly a
fixed number of samples and to erase the longest held
sample to store a new one. This is clearly likely to use
storage inefficiently and a preferable technique would
be to ‘decay’ all numbers at each step by multiplying
them by some number just less than one. This is a
common method; it is the discrete case of the exponential
decay and constitutes a low pass filter. Other strategies
could be employed, but these are the simplest con-
ceptually.

In developing the theory we occasionally had recourse
to intuitive notions such as ‘learning’, and ‘features’:
we should now like to make explicit the way we interpret

Correct Learning device
—

N+l - af}l + Ci(xw+)Pi(xw+1)

classification —| aj
V! Latest estimates

‘ ij of parameters

Pattern

- Retina

M
—_— gj = 2 aiji(xws1)
dn; 1 XN41 o

]

—,| Standard Classi-
decision _—
procedure fication

Fig. 2. Learning system realising formula 8
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the theory. We see the process of ‘generalisation’ to be deduce that, guided by the theory, we can attain a design
synonymous with interpolation and extrapolation, for any classification problem compatible with some
‘learning’ as the estimation of parameters or ‘weights’ prespecified criterion of performance.
in a functional approximation used for interpolation.
The individual functions ¢, in the linear expansion are Conclusions
featurest,_ profpflrltl e, tPrl char?cten;t;(l:ls ’ fWhi!e the We have seen how learning in pattern classification
Eomputa 1on o | ¢ particuiar ’va‘?e to N tunct:_lor} ¢ can be viewed as a problem of interpolation, and that
‘or a pattern 1S Preproce;sm%, eahufi extraction or viewed as such, there are many techniques available in
property ﬁltermg. The nal thresho ‘opgrgtlon, or numerical analysis which can be applied to pattern
m?iX]um selection, is the (standard) ‘decision pro- classification. Realisations can then be obtained in a
cev‘;.reh- these int tations we see that man isti systematic manner, and in such a way that for almost
1th these interpretation }f’ s a nI;a y XIS Hllg any classification problem, by increasing system com-
approaches are subspmed by t‘e the(l)ryi. or example, plexity any performance criterion can be met. This
Bledsoe and Browning (1959) “n-tuples’ are features in approach has also given an overview of pattern recog-
the.f°r¥n of polynomlgls of degree n, when we generalise nition and many seemingly different approaches have
their binary for mulatlon.of the problem to the case of been shown to be closely related. Thus we are supplied
continuous variables; while template matcmng uses only with a general mathematical theory of learning and
polynomla}ls of degfee zero and one (see Nllsso_n, .1965). generalisation in pattern classification.
The learning techniques deve}oped here are similar to The basic model is extremely simple, and it is hoped
manﬁ e?us.tmgl ap(}l)rgatclllles(,) wtllil; Zgiredcl?‘z{::sci:i ;l:gt thi. that the ideas will readily extend to sequential patterns
emphasis 1s placed not upon cation o in general, and to more advanced ‘intelligent’ functions.

the given samples (as in Nilsson, 1965, and others), but
rather on the ultimate performance of the final machine
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