A simple algebra system

By D. Barton,* S. R. Bournef and C. J. Burgess}

This paper describes a computing system that enables a particular class of algebraic manipulative
problems to be simply programmed. The scheme is described by reference to an example of a
problem involving the derivation of a function that may potentially contain many thousands of

terms.
(Received February 1968)

The system that we wish to describe here may be con-
veniently divided into two sections. The first section is
concerned with the language in which the manipulative
problem is to be programmed. This language will be
described by an example. We shall not be concerned
with the compiling techniques since these have been fully
described elsewhere (Matthewman, 1966). The second
section contains the run-time system and is composed
of a set of closed subroutines that actually carry out the
manipulation under the direction of the compiled object
code. This latter system of programs has been described
in Barton (1967) but a brief specification of the facilities
available is desirable here in order to draw attention to
the limitations of the system and to indicate possible
means of extension. It is important to remark that while
the syntax of the language that we shall describe is
almost identical to Titan Autocode (—, 1967) the data
elements with which we compute are not numbers but
algebraic expressions.

The run-time system

This package of programs is able to perform elemen-
tary algebraic operations on functions of the form

«= 3 Pk (ab, .. .0 0 Gu+jo+...+kz) (1)
Tk sin
K
where P/i%. is a polynomial in the variables a, b, . . .,/
with coefficients in the rational field. The numbers
i,j, ..., k’ are positive integers and the summation is
finite. The run-time system provides subroutines for the
operations of addition, multiplication, differentiation,
integration and substitution for the functions « defined
in equation (1).

The principal limitations of the system are imposed by
the restriction to a particularly simple class of functions
such as those in equation (1). In the course of our work
two of us are normally engaged in algebraic calculations
derived from celestial mechanics and we have found the
scheme entirely adequate for our needs. Experience
with problems in engineering and theoretical physics,
however, indicates that the run-time system should be
upgraded to compute with polynomials in a greater
number of variables. Perhaps surprisingly in the

* University College, Cambridge.

1 Trinity College, Cambridge.

problems that we have considered there has been no
requirement for a simplification algorithm or for more
complex functions. We have, however, found it neces-
sary to allow for polynomials with double length
rational coefficients, complex coefficients and floating
point coefficients, the range of single length integers
being (0, 10!!). These modifications are incorporated in
a new run-time system that allows an arbitrary number
of polynomial variables and is in the process of
development.

The programming language
The language in which programs are written allows
the four types of variable listed below:

1. Indices

These are fixed point signed integers in the range
|n] < 106 and are called by the names I, J,...,S, T.
It is also possible to use arrays of indices indexed by a
single modifier. These are called as I[n], . . ., T[n].

2. Expressions

These are literal functions of the type « (equation 1).
They may be called by any of the names 4, B, . . ., H or
U, V,...,Z Arrays of such expressions are allowed
and these are called A[n], . . ., H[n], Ulnl, . . ., Z[n].

3. Polynomial variables

These are the atomic variables a, b, . . .,/ that occur
as arguments in the polynomials that make up an
expression defined in equation (1).

4. Periodic variables

These are the atomic variables u, v, . . ., z that occur
as arguments of cosine or sine in an expression o.

The arithmetic operations carried out on expressions
are denoted by + and —, while multiplication is denoted
by juxtaposition. However, we have used . to represent
exponentiation, * for differentiation and $ for integration
of expressions. The differential coefficient of an
expression whose name is 4 with respect to atomic
variable a is therefore written 4*a, while the integral is
written $4a. Thus the sequence of instructions 4 = a.2;
A= A + A*a; A = $(Ab)b results in the setting of 4 to
the expression 3a%b? + ab>.

1 Computer Unit, The University, Bristol.

¥20Z YoJe\ g1 uo 1senb Aq 9z9L¥/€62/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod

Algebra system

Since there is no explicit multiplication operator we
have used quotes to allow the input of complex expres-
sions including cosine and sine. Hence 4 = 'SIN(U)’
sets A to sin(w). The symbol | (vertical bar) has been
used to introduce comment in programs and everything
following on the same line as | is ignored, including |.

Two substitution routines are provided by the system
and these will be illustrated by example. The program
A=a-+b; B=c.2; B=SUBSTITUTE (B, 4, c) will
result in the setting of variable B to the expression
a? + 2ab + b2, where we have substituted the initial
value of A into the initial value of B for the polynomial
variable ¢. The second type of substitution that is
provided will perform as follows:

A = 'COS(UY';
B — a; C = SUBSTITUTE (4, v + B, u, 4)

will result in C being set to the expression
a® at . a a&
cos(v) (1 ~ 5 + E) — sin (”)(ﬁ — ﬁ)

Here one should note that the literal expression cos(u) is
enclosed in quotes. The substitution program has then
substituted into the initial value of A4 for the periodic
variable u the expression v + B. The expression B
is assumed to be a small quantity and the result is the
appropriate Taylor series in the initial value of B
truncated to include only the terms up to order 4, the
last parameter in the call of substitute.

In the above example the algebraic operations that
have been performed by the call of SUBSTITUTE are

(a) u is replaced by v + B in the expression cos(u).
(b) The expansion

cos(v + B) = cos v cos B — sinv sin B

T

= cosv(l ~ 31

. B3

— smv(i—! —§+ ..)
is performed.

(c) The expression B is replaced by its value a, to obtain

the result.

Our work in celestial mechanics frequently requires
the expansion of functions as Taylor series in small
parameters and the truncation of such series to include
terms less than some prescribed order. The run-time
system therefore provides a facility to check the result
of any calculation for the presence of unwanted terms.
These checks are imposed by the run-time system when-
ever it carries out a multiplication and may be used in
several modes. Mode zero is preset and in this mode
all multiplication is carried out exactly. Mode one will
select terms whose total order is less than some pre-
scribed quantity, while mode two will select only those
terms whose order in a particular variable is less than a
given quantity. Several other modes are available. The
particular mode is selected by the directive MULTIPLY

294

that takes effect at run-time. The directive defines what
is meant by multiplication and takes two parameters.
The first is simply an integer indicating which particular
mode of multiplication is to be employed, and the
second parameter references an index vector containing
the parameters associated with each mode of multi-
plication. For example, 4 = ab; B=a + b.2; MUL-
TIPLY(1, I); I[0] = 3; A = AB will set the variable 4
to the expression a2b since multiplication in mode one
selects only those terms whose total order is less than
or equal to the first parameter of the index array,
namely I[0].

An example of the use of the system

The calculation that we shall present as an example is
drawn from celestial mechanics. It is a calculation that
potentially involves an enormous quantity of routine
algebra but it is otherwise a very simple problem. We
require to produce an expansion of the function F given
by

F = X2Y3(Py(X) + ()X, Y,P3(X)
+ (MAXIYIP(X)+..) (@)

to a given order in the small quantities a, b and ¢, where
the following relations apply:

v=FE — bsin E’
Y =1—bcosE

u=F—asinE
Xi=1—acosE

dE dE’ ®
together with
X =(1—e*)cos(p— ¢) + e*cos (¢ + ¢,
b=u-+w+ JV(I — a®)X3du @)
and¢’'=v+x+y—z+ J-\/(I — b)) Y2dv.
The P,(X) are the Legendre Polynomials. The final

expansion of F is to be in terms of the variables a, b, e,
u, v, w, x, y and z together with y. Since y is to be
treated as a quantity of degree two it will be represented
by ¢? where c is a literal variable.

We proceed to solve the first of equations (3) in the
form E = E(u,a) and hence to obtain X; and X, in
terms of ¥ and a. The change of variables a— b, u—v
leads to the expressions for Y; and Y, in terms of v and b.
We may then evaluate ¢, ¢’ and hence X from the first
of equations (4) and finally substitute these values into (2)
to obtain F.

To solve the equation u = F — asin E we write
E = u + &/ and notice that the zero order approximation
to &/ is &/, = 0. Given that the nth order approximation
to & is &, it follows at once that the next approximation
is given by

= asin A, &)

¥20Z YoJe\ g1 uo 1senb Aq 9z9L¥/€62/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod

Algebra system

We may therefore write the following simple program to
calculate £ = E(u, a).

X[0] =0; MULTIPLY (1,1) | Set initial approximation
and arrange to include

particular terms.
FOR I = 1:1:N; I[0] =1 | Select terms degree I
X[0] = SUBSTITUTE (‘4 SIN(U)’, u + X[0], v, 1)
REPEAT

The result of this calculation is an expression for E(u, a)
stored in X[0] and accurate to order nin a. In the above
program great power is provided by the use of a
FOR-REPEAT loop using the index variable 1. A long
and tedious algebraic procedure is thus performed by a
program of extreme simplicity.

It will be seen in equation (4) that we require a power
series approximation to 4/(1 — a2) and while it would be
possible to input such a series directly it is in practice

PROGRAM & A[4) X[3] Y[3) Ife]
1:
|£ix the order of derivation
N=4

lcalculate the first few Legendre po
FOR I=1:]1:N
AllI)l=(hh=l),I
REPEAT

3 FOR J=1:1:1

lys

3 ALIl=(A(I]l*h)/(20) ;

more convenient to derive it as a solution of the equation
C?2 =1 — g% Once again by an approximation tech-
nique where C, is the nth order approximation to C we

have
Cor1=(10—a>—CH2+C, (6

and since the first approximation to Cis Cy = 1 we may
calculate C using the following program:
C = 1; D = (1 — hh — aa)/2 | Set initial approximation
MULTIPLY (1, 1) and the value of (6).
FOR I=1:1:N; I[0]=1
C = C + SUBSTITUTE (D, C, h)
REPEAT

Finally our problem requires us to substitute into the
Legendre polynomials P,(X) for X and we shall therefore
require an explicit representation of these polynomials.

They may be calculated and assigned to the vector
A[1] ... A[N] by the program

IPROGRAM TO CALCULATE THE DISTURBING FUNCTION

REPEAT

larrange to round all products down to order less than or egual to I[é]

I[el=N s MULTIPLY(1,1I)

lcalculate square=root of
De(l=hh=aa)/2 3 C=1
FOR I=1s)lsN

Ile)l=1 ; C=C+SUBSTITUTE(D,C,h)
REPEAT

1 Xlel=e

lcalculate X, X, X,

X[11=sUBSTITUTE(1l=a'cOsS(V)',u+Xx[e],v,N)

(l=aa) and E=E(u,a)

s X[0]l=SUBSTITUTE(a'SIN(V)',u+Xx[el,v,I)

y X[21=1+X[0]*u 3 X[3)=$(X[2]x[2]C)u

lchange variables a to b u to v to obtain Y, Y,

FOR 1=231:3 ; Y[I]=SUBSTITUTE(SUBSTITUTE(X[I],Vv,u,1),b,a)

lcalculate X
X=(l=ee) 'CNS(U=V) '+ee'COS(U+Y) "’

REPEAT

X=SUBSTIMUTE (SUBSTITUTE (X, u+w+X[3],u,N),vex+y=z+Y[3],v,N)

Xi Y; and Xiy}
) Y=22YI[2]

lcalculate
Z=x(11Y(2]

|substitute to obtain Pn(X)
FOR I=22):N ; I[0]=N+4=21

for n'zlalc-o
AlI)=SUBSTITUTE(A(I], X, h)

+ REPEAT 3 I[el=N

lcalculate and print the disturbing function

FOR I=N:=1:3 3 A[NI=ccZA[N]+A[I=-1]

» REPEAT j; PRINT(YAIN])

ldirectives to stop program and to finish compiling and run. progranm

STOP ; START 1

Fig. 1
295

¥20Z YoJe\ g1 uo 1senb Aq 9z9L¥/€62/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod

Algebra system

FOR I=1:1:N

A[Il=(hh —1).1

FOR J = 1:1:I; A[I] = A[I]*h/2J; REPEAT
REPEAT

Here we have used Rodrigues’ formula

dr 2 n

2t ain = D"

The remainder of the problem is composed simply of
elementary substitutions and requires no explanations.
A complete program is presented in Fig. 1 together with
the set of results obtained for N = 2.

It should be understood that the calculation described
above when taken to the 4th order results in an
expression containing many hundreds of terms, while an
8th order development contains many thousands of
terms. Nevertheless the simplicity of the actual calcula-
tion is preserved in the program and the cost in terms
of computing power (time and store used) is remarkably
small.

The complete program is shown in Fig. 1 and it is
introduced by the words PROGRAM 0. This is
followed by a specification of the arrays required during
the run. The program begins at label 1 as directed by
the instruction START: 1 at the end of the program.

The output for this program is presented in Fig. 2
and is an exact reproduction of the printed output. The
independent periodic terms in the expression are
numbered 1-21 by the numbers in the left-hand margin.
The numbers in the right-hand margin refer to the
number of polynomial terms in the coefficient of the
corresponding periodic term. The capital letters that
occur in Fig. 2 correspond to the lower case letters
a, b, ...l that are atomic variables to the compiler.
Periodic term 16 is arranged over three lines and is in fact

2—%8 —1—85b2 —%az) cos Qu — 2v
+ 2w — 2x — 2y + 22).

The actual result should be interpreted as the sum of
the 21 periodic terms.

P, (X) =

A compiler for the system

A load and go compiler has been written for the
language using Psyco (Matthewman, 1966) and at
compile-time this occupies 16K of core store. At run-
time the store required depends upon the size of the
calculation involved. For the above program 8K is
required when N = 2, while 12K is necessary for the
case N =4. (The Titan is a prototype Atlas 2 with
128K of 48-bit words.) The time required to compile
and run the case N = 2 is 35 seconds, and for N = 4 is
90 seconds.

The system we have described is particularly well
suited to the calculation that we have used as an
example, and it is in daily use performing the calculations

296

1) <+ 1/4 = 3/2E,2 ¢ 3/8B,2 + 3/8A,2> (e
2) <+ 3/4B COS(V) (1
3) ‘+-9/8B,2 COS(2V) (1
4) + 3/2E,2 CO8(2V+2X+2Y=22) (1
5) 4 15/8),2 COS(2Ve2W+2X+3Y=27) (1
6) = 1/2A COS(U) (1
7) = 3/4AB COS(U+V) (1
8) = 63/BAB COS(Uw3V42He2X=2Y+22) (1
9) = 9/4A COS(U=2V+2W=2X=2Y+22) (1
10) = 3/4AB COS(U=V) (1
11) + 9/8AB COS(U=V42W=2X=2Y+22) (1
12) = 1/8A,2 COS(2V) (1
13) + 3/2E,2 COS(2U+2W) (1
14) + B1/8B,2 COS(2U=4Ve2W=2X=2Y+27) (L.
15) + 21/8B COS(2U=3V42W=2X=2Y+22) (1
16) COS(2U=2V42W~2X=2Y4232)

<+ 3/4 = 3/2E,2 = 15/8B,2 = 15/8A,2> “
1 = 3/8B COS(2U=V+2W=2X=2Y+22) (1
18) 4 21/8AB COS(3U=3V42H=2X=2Y+22) (1
19) + 3/4A COS(3U=2V42W=2X=2Y+22) (L
20) = 3/8AB COS(3U=V42H=2X=2Y+22) (1
21) 4 3/4A,2 CO8(4U=2V42H=2X=2Y+27) (1

Fig. 2

for which it was designed. Indeed the existence of this
system has made it possible to undertake many calcula-
tions that would otherwise be impracticable in a reason-
able time. It is clear that this system is restricted in its
scope, and it is through the manipulative routines that
most of the system’s restrictions arise. It should be
mentioned that the compiler is quite independent of
these routines. However, there is evidence that the
modifications indicated earlier in this paper will improve
the run-time system to such an extent that it will be of
real value to users other than those in celestial
mechanics.

Some further remarks on the complete algebra system

The above examples have indicated how the compiler
should be used to perform simple algebra. However,
the bare bones of a system such as ours would be of
little value unless it contained facilities for program
control, together with service routines allowing com-
plete control of space inside the computer, and compre-
hensive input/output facilities. Further, such a system
must contain both a compile-time and run-time diagnos-
tic routine.

Program control is similar to that provided by Titan
Autocode and consists of conditional and unconditional
jumps together with ‘For-Repeat’ loops.

Space at run-time is handled at the lowest level by the
run-time system described in Barton (1967). It is a
feature of that system that whenever it is possible to
perform a calculation involving one or two operands
and derive the result entirely within the space occupied
by the operands, then this is done and the operands are

¥20Z YoJe\ g1 uo 1senb Aq 9z9L¥/€62/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod

Algebra system

deleted. However, it is not desirable that the compiler
instruction 4 = B + C should result in the deletion of
expressions B and C whenever it is obeyed. Conse-
quently the compiler must copy B and C and add the
copies before assigning to 4. This implies that if B and
C are both of such size that they occupy more than half
of the available space then the instruction 4 = B + C
cannot be successfully obeyed. A facility is therefore
provided that ensures that a labelled list name is not
unnecessarily copied when an arithmetic expression is
evaluated, and the instruction 4 = B: + C: adds B to
C without copying either and hence deleting both. In
our work we have found this facility to be extremely
useful both as a time and a space economy. In some
circumstances when it is not convenient to use this
labelling facility the space occupied by the expression A4
may be returned to the pool of free space by the
instruction LOSE(A).

Data may be input to the system in several ways.
First, explicit expressions may be written into a program,
e.g. A=aor A ="'SINU). Alternatively, an expres-
sion may be input by the instruction 4 = INPUT that
causes the next complete expression from the currently
selected input stream to be read in and assigned to A.
The stream is administered entirely by the Titan super-
visor, and information is presented to the compiler from
the stream one character at a time. Other streams may
be selected by a READER instruction, and there may
be up to 15 co-existent input streams. The expressions
presented on an input stream may be written either in
free format and delimited by a closing bracket followed
by a new line, or in fixed format as output by the
compiler.

Output from the compiler may be obtained on up to
15 separate output streams selected by the OUTPUT
instruction, and the instruction PRINT provides for
output of both expressions and indices. Text may be
output by the TEXT instruction.

The fixed format output from the compiler, while
being comparatively simple to read, contains consider-
able redundancy and it is therefore convenient to provide
binary input/output for the storage of expressions that
are required for further calculation. For this purpose
the READ, WRITE and TAPE instructions are provided
and these arrange for a binary copy of an expression to
be written or read from a specified block of a particular
magnetic tape.

In order to avoid recompiling a working program,
facilities have been provided to write a complete
restartable core image of a program and its data area to
magnetic tape at run-time. This core image may later
be reloaded and restarted either at a prescribed point
after re-initialisation or alternatively immediately after
the dumping point. By using this facility the user can
arrange to run his program in the minimum of core store
since, if at any stage the store allocation requires to be
changed, the program may simply be dumped and
restarted with a new allocation.

At compile-time syntax errors are discovered by the

297

compiler and the offending line is printed out. Com-
pilation continues to the end of the program and
generally all syntax errors are indicated by one test run
with the compiler. At run-time any error that occurs
leads to a diagnostic listing that contains the line number
of the offending instruction, a message describing the
fault, the values of all indices, and a list of those
variables that have been used and those that are still in
use. Any attempt to compute with a variable that has
not been set, or one whose space has been relinquished
and therefore has no value, leads to an error.

Any run-time fault may be trapped using a TRAP
instruction, and when the fault occurs control will be
transferred to a routine in the user’s program so that
he may arrange his own diagnostics or take some other
action following the error.

A facility is provided in the present system to allow
work involving the symbol 4/—1. The polynomial
variable i is treated as 4/—1 in all circumstances. It
should be noted that it is necessary to provide a complex
number facility in order to allow work with complex
double length rational numbers that are required for
some applications in celestial mechanics.

Conclusion

We have indicated above that this compiler is
independent of the run-time system as far as the mani-
pulative routines are concerned. It would seem that a
useful purpose would be served by the development of
a simple language, the syntax of which was defined, while
the semantics were left undefined, at least in so far as
arithmetic operations are concerned. It would then be
possible for independent users to construct their own
systems for algebraic manipulation or indeed other
projects. These systems could be specially tailored to
meet the requirements of particular problems and would,
in general, be more economic in time and store than the
comprehensive giant systems that will otherwise be
developed. Further, it is remarkable that in no problem
that we have encountered has it been necessary to
factorise polynomials or general expressions or even to
simplify expressions in anything other than the trivial
sense.

We are of course aware that simplification and
factorisation are of great importance in certain problems
of mathematics that it is desirable to solve on a computer,
but nevertheless it is unnecessary to hold up possible
developments on other subjects while these very difficult
problems are overcome.

It is true that languages have been previously developed
with a syntactic/semantic distinction similar to that
indicated above but these do not appear to be generally
available to the machine user outside the computing
laboratory.

We should like to thank Dr. J. H. Matthewman for
the use of the Psyco compiler with which we have
constructed our own compiler. Further, we thank him
for his invaluable assistance in teaching us to use Psyco

¥20Z YoJe\ g1 uo 1senb Aq 9z9L¥/€62/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod

Algebra system

and assisting with the development of the compiler. For
extensive use of the computing facilities available in

References

MATTHEWMAN, J. H. (1966). Ph.D. Thesis, Cambridge University.

Cambridge it is our pleasure to thank the Director and
Staff of the Mathematical Laboratory.

BARTON, D. (1967). A scheme for manipulative algebra on a computer, Computer Journal, Vol. 9, p. 340.
——, (1967). Titan Autocode programming manual, University Mathematical Laboratory, Cambridge.

Book Review

New Methods of Thought and Procedure, edited by F. Zwikcy
and A. G. WILsSON, 1967; 338 pages. (Springer, 79s.)

This book contains contributions to a Symposium in Method-
ologies sponsored by the Office for Industrial Associates
of the California Institute of Technology and the Society
for Morphological Research, held at Pasadena in May 1967.
The contents include a short prologue by Zwicky, six sections
on Operations Research, Systems Engineering, Dynamic
Programming, Information Theory, Game Theory and
Morphological Research ending with an epilogue by Wilson.

The opening paragraph of the epilogue perhaps best sums
up the aspirations of the organisers. Wilson says ‘A primary
purpose of this conference has been to consider whether the
various methodologies employed in solving problems when
taken together constitute in themselves a useful scientific
and technological discipline. The descriptions of the several
approaches to problems that have been presented here—
Operations Research, Systems Engineering, Morphological
Analysis, etc.—have made visible some common principles
which have been independently developed for structuring,
analysing, and solving complex problems of many types.
Though using different names and terminologies, the iden-
tities and overlaps contained in these approaches, taken with
the fact of their independent discovery in many diverse
contexts, strongly suggest the developability of a useful
discipline that we may call ‘methodology’. Although the
presentations during this conference have only partially
defined the subject area of methodology, thay have demon-
strated that it would now be meaningful to take steps towards
systematic definition and organisation of the concepts so far
developed and establish a formal discipline.” Zwicky in the
chapter of Section VI on Morphological Research defines
his approach thus: “The morphological approach to discovery,
invention, research and construction has been conceived and
developed for the purpose of dealing with all situations in
life more reasonably and more effectively than hitherto. This
is achieved through the study of all relevant interrelations
among objects, phenomena and concepts by means of methods
which are based on the utmost detachment from prejudice
and carefully refrain from all prevaluations. Applications
of the morphological methods of the total field coverage, of
negation and construction, of the morphological box and
others to technical problems in particular and to human
problems in general are described. These not only illustrate
how discovery, invention and research can be conducted

298

most effectively but also how the morphological approach
makes possible the clear recognition of those fatal aberrations
of the human mind which must be overcome if we are ever
to build a sound world.’

So far as the individual contributions are concerned, I
doubt if the Conference was really a success from the stand-
point of the editors. Each section contains at least one
contribution of real merit—Bellman’s chapter ‘Dynamic
Programming: A Reluctant Theory’ is, to me at any rate,
a wholly convincing and delightful description of how he got
into Dynamic Programming, but like most contributions
appears to add little to realising the aims of the Symposium,
unless it is the claim that almost every problem involving
decision-making is a problem involving multi-stage decision-
making to the solution of which dynamic programming
provides a comprehensive approach.

Most Operational Research workers would probably agree
that problems need to be approached from many angles and
can seldom be isolated completely from their context. Not
enough people trying to instal computers in industry and
commerce realize that the accounting systems, techniques
of stock control and other management sciences which they
seek to computerize are in fact devices to control a working
system; the implementation processes involve the destruction
of the former control system and the creation of a new one
which when embedded in the working system interacts with it
and more often than not causes it to change. This failure
to appreciate the ‘ecological’ balance between various parts
of a system explains, in my view, many of the failures of
industrial and commercial computer installations. Thus,
it must be concluded that Zwicky has a case to argue. In his
own chapter, however, I believe he goes too far, at least in
so far as his description of devising a missile launching system
is concerned. For he proposes that the morphologist will
study the whole class of possible solutions to the problem,
before reaching a decision. There is a danger in this that
no progress at all will be made since the results of all possible
research—future as well as past—have to be considered.

Having suggested that the contents of the book do not,asa
whole, achieve the editors’ purposes, I can nevertheless
recommend it to readers. Most of the individual contri-
butions have a value in their own right and are well worth
study. No one could fail to profit by reading the excellent
papers on Systems Engineering by Dean Gillette of Bell
Telephone and on Games Theory by Oscar Morgernstern.

A. Young (Liverpool)

¥20Z YoJe\ g1 uo 1senb Aq 9z9L¥/€62/€/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod

