The sofa problem
By W. E. Howden*

A program is described which can be used to determine if an irregular two-dimensional object can
be moved from one point to another point inside a complicated two-dimensional structure (the
two-dimensional sofa problem).
and an associated search procedure is used to indicate the desirability of a generalised programming

schema.

The representation of the program in terms of a problem network

(First received March 1968 and in revised form May 1968)

A problem of both practical and academic interest is
to determine if an object 4 can be moved from one
point p, to another point p, inside a complicated
structure M. Consider, for instance, the problems of
determining whether part of an aircraft can be easily
accessed and removed for servicing, or if a complicated
structure can be assembled from pre-fabricated parts in
a specified order. In some problems there will be no
route from p, to p, and in others there will be several
routes of which perhaps the shortest must be determined.
Some of the difficulties encountered when dealing with
complicated shapes can be avoided if the problem is
treated numerically rather than analytically, i.e. the
boundaries of M and A4 are described as sequences of
points on a grid G (of fineness Ax) rather than as col-
lections of known analytic curves.

Let A be a numeric representation of any two-
dimensional object (e.g. a sofa) and M a numeric
representation of any two-dimensional structure (e.g. a
house). Then if p, and p, are any two points in M, the
program described below will determine whether or not
A can pass inside M from p, to p,. The program was
written in FORTRAN and implemented on the Cambridge
University Titan computer.

Sofa program

The input data for the program consists of numeric
representations of the boundaries of M and A, and is
stored in the two lists Ly, and L,. The coordinates of
the boundary of 4 are relative to a point ¢, inside A4
(the ‘centre’ of A). If p is some point inside M then
say that A is at point p if A4 is placed so that ¢, coincides
with p. If A is rotated about ¢, through an angle 0,
then say that A is rotated through angle 8. Choose an
increment of arc Af so that if 4 is rotated through A8,
the maximum displacement of any point in A is less than
Ax.

The lists L,, and L, are in chain-encoded form
(Freeman and Garder, 1964). Chain-encoding allows
for both economy of storage and ease of manipulation
in describing 4 and its rotations. In this program the
type of chain-encoding used requires that each point
differ from its predecessor by one unit in exactly one of
its coordinates. If (x, y) is a point on the boundary of

A or M, then the ‘next point’ on the boundary is allowed
to differ from (x, y) in only one of four ways and only
this difference need be stored. For example, suppose the
boundary of 4, B,, consisted of the sequence of points
3,4), (2,4, (1,9, (1, 3), (2, 3), (3, 3) then L4 would be
of the form (3,4),1,1,2,3,3. Only one coordinate,
together with a list of numbers representing differences,
is needed to represent 4 and each difference requires only
two bits of storage. If B, is not connected then L, will
consist of several sublists, each of which represents a
maximal connected segment of B,. Let g; and a;.{ be
two points on the boundary of 4 where a; ., is the point
‘after’ a;. Suppose that L, indicates that (a;.,), =
(@), + 1 and (a;.,), = (@), The formula becomes
only slightly more expensive when rotation through an
angle 6 is allowed for by using (a;.), = (@;), -+ cos @
and (4, ), = (@), +sin . A table in increments of
A#@ can be used for storing cos 8 and sin 0.

The program is based on certain continuity assump-
tions about the boundaries of M and A and on the
assumption that any route through M for 4 can be
approximated by unit translations of A parallel to the
axes, and unit rotations of 4 about c4. Suppose it is
known that A4, when rotated through angle 6, will fit
inside M at a point p. Let ¢ be a point in M adjacent
to p and suppose that when A4 is placed at g with rotation
0, the boundaries of M and A4 do not intersect. Then if
Ax was chosen sufficiently small it can be assumed that
the ‘sofa’ represented by 4 can be moved inside the
‘house’ represented by M from the point p to the point g
(i.e. in moving from p to g the boundary of the ‘sofa’
represented by 4 does not ‘hop over’ or surround a little
piece of the ‘house’ represented by M). Similarly,
suppose that the boundaries of M and 4 do not intersect
when A is put at p with rotation 6 + Af. Then if Af
is sufficiently small it can be assumed that the ‘sofa’
represented by A will fit inside the ‘house’ represented
by M at p at rotation 6 + A6.

The attempt to discover a route through M is
equivalent to finding a path (or shortest path) through
a problem network N. In this case N is a network of
four-dimensional points such that (x, y, «, B) is a node
in N if and only if the boundaries of 4 and M do not
intersect when A4 is placed at (x,y) in M for each
rotation in the interval [«, 8] but not for the rotations

* University Mathematical Laboratory, Corn Exchange Street, Cambridge.

299

¥202Z UoJe\ g1 uo1senb Aq L¥9L¥/662/S/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod



Sofa problem

o« — Af and B + AB. Two nodes (x,, y;, «;, B;) and
(%3, ¥2, %2, Bo) in N are connected if (x, y;) and (x,, y,)
differ by a unit in exactly one of their coordinates and
[, B;] intersects [a,, B,]. The possibility that N is not
a true network but consists of several disjoint smaller
networks is included. The sofa program determines
the nodes in the problem network adjacent to a given
node and uses the strategy described below for processing
this information about N to produce a solution. In this
particular program the strategy used was a straight-
forward exhaustive search procedure. Let n; and n, be
the nodes in the problem network which represent the two
points p; and p, between which it is desired to move A.
Starting from n;, the nodes in N adjacent to n, are deter-
mined. Then each of these nodes is considered in turn as
a starting point and so on until », is reached or there are
no more nodes to be considered. Suppose g(n;, 1)) is a
function which measures the ‘distance’ between any two
nodes (n;, n;) which are connected (adjacent) in N and that
f(n)) is defined by f(n;) = f(n;) + g(n;,n;). For each node
n; in N which is being considered, the node n; before n;
(i.e. the node n; to which n; was adjacent) is noted and
the value of f(n;) = f(n;) + g(n;, n;) is determined. If
n, is reached a path through N can be constructed by
working backwards from », to n; since the name of the
node ‘before’ each node has been stored. Suppose n; is
adjacent to a node n; (i.e. we have got to n; from n;)
but #; has been previously discovered (as a node adjacent
to some earlier node n,). If f(n;) + g(n;, ny) < f(n,) +
g(ny, n;) then f(n;) becomes f(n;) + g(n;, n;) instead of
its previously assigned value f(n,) + g(n;, n;), the node
‘before’ n; becomes n; instead of n,, and n; is considered
as a starting point once again. If f(n) + g(m;, n)) >
f(n;) + g(ny, n;) then n; is ignored and no action is taken.
This technique is similar to the dynamic programming
procedure described in Busacher and Saaty (1965). If
g(n,n) =1 for any two nodes n; and n; which are
adjacent in N then the path with the least number of
nodes in it is determined. Other functions g can be used,
for example, to help minimise the number of turnings in
the first path to be discovered. The ‘looking backwards’
type of strategy used in this program can be compared to
the ‘looking ahead’ type of strategy of the evaluation
function in the Graph Traverser (Doran and Michie,
1966).

If L, and L, are used to determine whether or not
the boundary of A intersects the boundary of M, every
point in L,, will have to be checked against every point
in L,. To avoid this expensive procedure a model of
the boundary of M is constructed in the form of a tree
of lists T,, in which each list gives all the values of y
for a particular x. To determine if the point (x, y) from
L, is on the boundary of M, the list beginning at T',(x)
is examined for the entry y.

Program results

The upper bound /,,,, to the set of all lengths / of
rectangles of width w that will pass through a corridor

300

of width W with a right-angled corner in it, is given by
Lyaox = 2.(W.\/2 —w). The program was tested with
w=2and W=28(,,, =19). A route was determined
for/ = 16 when A@ = =/10. For / = 16 an increment
of arc of the same order of size as Ax would be
A8 = 7/20. Even with Af decreased to 7/80 success
could not be achieved for /= 17, indicating that
accuracy (of approximately three units) is more
dependent on Ax, the fineness of G, than on the size of
A6.

The computation time for the simple example
described above was approximately 90 seconds. A
larger more complicated example, in which a U-shaped
object is required to retrace its path several times in
order to achieve necessary changes in orientation,
required between 5 and 6 minutes computation time.
A decrease in Ax to Ax/n increases the computation
time and storage requirements k to a value less than the
possible maximum of k.n2. Let m be the approximate
number of points in M. Based on the results of both
simple and complicated examples, the amount of
working space required by the program is of the order
of 9.m/2 twelve-bit words. The program occupies about
11K of (48-bit word) core store. It should be noted
that the running time and storage requirements for this
type of sofa program depend directly on the strategy
being used.

The program produces diagrams of the ‘sofa’ and the
‘house’ on the line-printer, with the solution route
marked out in that of the ‘house’.

Strategies and heuristic programming

Although the strategy of the sofa program can be
described independently, it was not written as a separate
piece of program. It is intermingled with the other
parts of the program and is not easily altered. Lack of
flexibility is a characteristic feature of large heuristic
programs and it constitutes one of the major limitations
in a heuristic approach to problem solving (Newell and
Simon, 1964). Approaches to the problem of inflexibility
can be found in the early attempts to formulate problems
in terms of a problem network and a separately written
general network-processing procedure (e.g. DeFlorio,
1963, and Suurballe, 1962). In a general way this
approach is fundamental to the General Problem Solver
(Newell and Simon, 1963), as well. Extensive research
into the representation of heuristic programs specifically
in terms of a problem network and an independent
strategy-processor was first described by Doran and
Michie (1966).

For those engaged in the construction of particular,
large heuristic programs that can be formulated in terms
of a problem network, it would be a great advantage if:
(i) ‘strategy programs’ were available which were written
in a general format so that they could be applied to
contextually differing problems, and (ii) alternative
strategies could be applied independently or in com-
bination to the same problem.

¥202Z UoJe\ g1 uo1senb Aq L¥9L¥/662/S/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod



Sofa problem

Conclusions time may result from the increased cost of communica-
tion between the different parts of a program that is
split up in this manner. However, since most of the
computation time is consumed within single blocks of
program (e.g. the routine that checks to see if a given
node is in N in the sofa program), the increase in com-
putation time will be small relative to the advantages
gained in providing for the variable use of different
strategies. The efficiency of a heuristic program rests
more in its ability to avoid processing non-relevant
information contained in the problem network (i.e. in
the efficiency of its strategy) than in the speed with
which different parts of the program operate and
communicate. The facility for testing and improving
the strategy of the sofa program should be an important
benefit of the programming schema. ‘If you want to
choose between selectivity and speed, choose selectivity
because it will buy a great deal’ (Selfridge, 1965).

The accuracy achieved in the sofa program indicates
the feasibility of a numerical approach to the two-
dimensional sofa problem. The ideas in the program
are readily extendable to three dimensions and a solution
to the more general sofa problem in which it is required
to determine whether or not a deformable three-
dimensional object can be moved between two points
inside a three-dimensional structure is being programmed.

Because of its evident formulation in terms of a net-
work search, the sofa problem has led to the idea of
programming schema in which different strategy routines
can be applied to the same problem or, alternatively, the
same strategy routine can be applied to different
problems. Such a schema is being used to program the
three-dimensional sofa problem and it is hoped that it
will provide a technique for minimising storage require-
ments and computation time. The schema is a method
of dividing the different parts of heuristic programs into:
(i) overall or global strategies for dealing with problem

networks as a whole, (ii) local strategies for dealing with Acknowledgements

particular nodes in problem networks, (iii) global data The author wishes to thank C. A. Lang for his
programs for providing overall information about a invaluable assistance in the formulation of the sofa
specific problem, and (iv) local data programs for program and for helpful discussions about the pro-
providing particular points of information about a gramming schema. This research was financially
specific problem. Possible increases in computation supported by the National Research Council of Canada.

References

BUSACHER, R. G., and SaATY, T. (1965). Finite Graphs and Networks, New York: McGraw-Hill Book Co.

DErFLORIO, GEORGE (1963). Intelligent Automata and Man-Automaton Combinations: A Critique and Review, Electrical
Engineering, Vol. 82, p. 200.

DoraN, J. E., and MicHig, D. (1966). Experiments with the Graph Traverser Program, Proceedings of the Royal Society, Vol.
294A, p. 235.

FREEMAN, H., and GARDER, L. (1964). Apictorial Jigsaw Puzzles; The Computer Solution of a Problem in Pattern Recognition,
IEEE Transactions on Electronic Computers, Vol. EC-13, p. 118.

NEWELL, ALLEN, and SIMON, HERBERT A. (1963). GPS, A Program that Simulates Human Thought, in Computers and Thought,
New York: McGraw-Hill Book Co.

NEWELL, ALLEN, and SIMON, HERBERT A. (1964). Problem Solving Machines, International Science and Technology, Vol. 36,
p- 48.

SELFRIDGE, OLIVER (1965). Reasoning in Game Playing by Machines, in Computer Augmentation of Human Reasoning,
Washington: Spartan Books, Ltd.

SUURBALLE, JoHN W. (1963). Network Algorithms for Combinatorial and Discrete Variable Problems, in Recent Advances in
Mathematical Programming, New York: McGraw-Hill Book Co.

Appeal from the Book Review Editor

The British Computer Society receives a large number of newly-published books for review and it is
becoming difficult to find reviewers for all of them. In the past I have tended to rely on persons I
know or who have been recommended to me. I believe there must be many members of the BCS
who would like to review some books but are never asked because nobody knows of their willingness
to help. Unfortunately, the BCS is unable to pay the reviewers, although they are allowed to keep
those books they review.
Would anyone willing to help please write to me, indicating their subject preferences?
Dr. P. A. Samet
BCS Book Review Editor
Computer Centre
University College London
19 Gordon Street
London, WC1

301

¥202Z UoJe\ g1 uo1senb Aq L¥9L¥/662/S/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod



