On the calculation of orthogonal vectors

By M. J. D. Powell*

Given an orthonormal basis, d,, d,, . . ., d, of Euclidean n-space, and given some vector d, which
is not orthogonal to d,, this paper shows how to calculate, in O(n?) computer operations, a new

orthonormal basis, df, d3, . .

., d}, having the property that d} is a linear combination of the k

vectors dy, d,, . . ., d;,_;. The method is useful because it reduces the amount of computer time
that is needed by Rosenbrock’s (1960) minimisation procedure. We show that any errors do not
grow if the method is applied many times.

(Received May 1968)

1. Introduction

In an iteration of Rosenbrock’s (1960) minimisation
procedure we start with n orthonormal directions,
dy, d, ..., d, in Euclidean n-space, and we search along
them in a cyclic way, until a non-zero step has been made
along each one, and so we obtain a total displacement

do == aldl + a2d2 + . e + dnd", (1)

having the property that the multipliers o;(i = 1, 2,. .., n)
are all non-zero. For the next iteration a new set of
orthonormal directions, df, d¥, . . ., df, is obtained, and
it is chosen so that, for k = 1,2, ..., n,d¥ is a linear
combination of dj, d|, .. ., d,_;. In the original paper
the new directions are calculated by the Gram—Schmidt
orthonormalisation process (see Davis, 1962, for instance),
which requires O(n%) multiplications, and the same
method is followed in the recent 1.C.I. Monograph
(Box, Davies and Swann, 1968). However, it often
happens that the rest of the computation of an iteration
is O(n?), so it is useful that this note shows how the new
directions can also be obtained in O(n?) computer
operations.

The minimisation method due to Davies, Swann and
Campey (Swann, 1964) is similar to Rosenbrock’s
procedure, but an important difference is that some of
the multipliers «; in equation (1) may be zero. To
account for this case we depart from the above definition
of di if it happens that o = .| =...= o, =0,
and instead we I3t df = d,. Thus our device is also
relevant to the D.S.C. algorithm.

A third application of the algorithm of this paper is
to a method for solving systems of non-linear algebraic
equations (Powell, 1968).

The algorithm is described in Section 2, and in Section
3 we prove two stability theorems to show that errors
do not grow if the method is applied many times.

2. The algorithm

There are two versions of the algorithm because some-
times, for instance in Rosenbrock’s method, the direction

d, is specified by the values of the multipliers «, «, . . ., «,

of equation (1). If the multipliers are given we use
Algorithm A; otherwise we commence Algorithm B by

calculating the numbers o;(i=1,2,...,n) from the
scalar products
o; =(d;,dy),i=12,...,n ?2)

Next, in both algorithms, we inspect the sequence of
multipliers oy, a5, ..., «,, and we let «, be the last
non-zero multiplier of the sequence. Usually k = n,
and this is always the case when the algorithms are
applied to Rosenbrock’s method. However, if k <n,
we now define

d¥t=d,i=k+1,k+2,...,n 3)
Next we set the quantities
t=k
s = ai 4)
g = (dek

in order to start an iterative process, which calculates
the new directions d¥, d5¥,... df. 1In fact the index ¢
is used to count the iterations, and we finish iterating if
t =1. Ift > 1 we calculate d* from the formula

df = (sd,_ — o, 10)[[s(s + of_)]"2 (5)

Before starting the next iteration we decrease ¢ by one,

and we add the quantities «? and «,d, to s and to o,

where now the subscripts have the new value of z.
Finally in Algorithm A we set

dt = a/+/s, (6
and in Algorithm B we set
dit = do/||do||- @)

Note that the two algorithms give identical results if
the directions dy, d,, . . ., d, are orthonormal, and if we
use exact arithmetic.

To understand the operations of the above procedure
we write out the vectors obtained by Algorithm A as
shown in (8)
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ﬂql+a2d2+...+akdk

_ (oc%-}— a% + eee + al%)dl — dl(dzdz + a3d3 + es e +akdk)

[(2+ a2+ ... +ad)o?+ o+ ...+ aP]?
_ (d% + Cli +. .o + di)dz - d2(43d3 + a4d4 +. . —,+‘ ozkdk)

* __
H= TRt + oD
d3
di
d* — alzcdk—l — oy (o dy)
=

[o(eg— 1 + o]

d*=di=k+1Lk+2,...

It is straightforward to verify that this new set of
vectors is orthonormal, and satisfies the condition that,
for t < k, df is a linear combination of dy, d,, . . ., d,_;.

3. Stability

Whenever the algorithms are applied there are some
errors due to the limited precision of the computer that
is used for the calculation. We consider the errors in
this section, and to help the analysis we introduce some
matrix notation. We let D and D* be the matrices

D=, dy,...d)

D* = (dt, 43, .
so, for example, d, is the first column of D.
Using this notation we write equations (8) as

D* = DQ, (10)

where the elements of the matrix Q are functions of the
parameters oy, as,..., o, It is important to notice
that the parameters occur in such a way that (i) Q is an
orthogonal matrix, and (ii) there is no cancellation in
the formulae defining its elements. Therefore there
will be no large errors if the method of this paper is
applied only a few times.

However, the details of Rosenbrock’s method show
that the algorithms may be used iteratively, in such a
way that the directions df, d5, . . ., df replace the direc-
tions d,, d,, ..., d, on every iteration. Therefore the
question of stability is important, and we must consider
the possibility of the growth of errors. The point is
that, due to previous calculation, the directions
dy, d,, ..., d, will not be exactly orthonormal, and the
deviations will cause the vectors df, d¥, . . ., df to depart
from orthonormality as well. If the resultant errors in

¥, d¥, ..., d¥ tend to be larger than those in
di, d,, ..., d, we have an unstable process, and it can
happen that a sequence of iterations causes negligible
errors to grow to an unacceptable size.

Fortunately the algorithms of this paper are not
unstable, and to prove this fact we measure the devia-
tion from orthonormality of the vectors dy, d,, ..., d,

n

303

(Z+a2+...+a)(a2+aE+ ...+ L (8)

by the number

AD) =3 X I[d,d)— 8;)% (11)
i=1 j=1
where §;; is the Kronecker delta,
0747
5, :{ S (12)
1,i=j.

Two theorems show that, even if dy, d,, . . ., d, satisfy
no orthonormality conditions, the value of A(D¥*) will
not exceed the value of A(D) if either Algorithm A or
Algorithm B is applied. The result depends on the
assumption that there is no error in the calculation of
the new directions, which is tolerable because we are
considering the effect of previous errors.

THEOREM 1
Given any n directions d,, d,,...,d,, and any n
multipliers o, a,, . . ., «,, then the equation
A(D*) = A(D) (13)

holds, where the matrices D and D* are defined by
equations (8) and (9).

ProOF
The definition (11) implies the equation
A(D) = tr{(DTD—I)T(DTD—I)}
— tr(DTDDTD) —2tr(DTD) + tr(I), (14)
where the notation tr (.) stands for the trace of the
matrix inside the brackets. Therefore, because D* is

related to D by equation (10), and because {2 is an
orthogonal matrix, we obtain the identity

A(D*) = tr(QTDTDDTDQ) — 2tr(QTDTDQ) + tr(I).
(15)

Now the definition of a trace and the orthogonality of
Q imply that expressions (14) and (15) are identical, so
the theorem is proved.

An immediate corollary of Theorem 1 is that
equation (13) holds for Algorithm A. But we cannot
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deduce the same result for Algorithm B unless expres-
sions (6) and (7) are identical. Instead we have the
more favourable theorem:

MDY = 3 31 d) — 82 ()

Let Q be the orthogonal matrix that is consistent with

equations (8) and (10), and let

THEOREM 2 D — DQ. (18)
The matrix D*, defined by equation (9) and Algorithm

B of Section 2, is such that, for any set of directions

d,d,, ..., d, we have the inequality

Because the last (n — 1) columns of D are identical to
the last (n — 1) columns of D*, equation (17) provides
the inequality

A(D*) < A(D). 16) A(D) > A(D*). (19)
Now by the argument of Theorem 1 we obtain the
PROOF identity 5
For Algorithm B the multipliers «y, a5, ..., «, are A(D) = A(D), (20)
defined by equation (2), df is defined by equation (7), so Theorem 2 is an immediate consequence of inequality
and for ¢ > 2 the definition of d}* is given by equation (8). (19).
It follows that the vector df is normalised, and is ortho- Both the algorithms and the stability theorems have
gonal to the other calculated vectors, df,ds, ..., dr. been checked by numerical examples, and they confirm
Therefore from the definition (11) we obtain the equation that the method of this paper is satisfactory.
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Book Review

Asymptotic Methods in the Theory of Linear Differential After a brief historical introduction, in Chapter 1 is given
Equations, by S. F. FEsHCHENKO, N. I. SHKIL’ and L. D. a method for solving a single second-order ordinary equation
NIKOLENKO, 1967; 270 pp. (Barking, Essex: Elsevier in cases of both resonance and non-resonance. This is
Publishing Co. Ltd., 140s.) generalised in Chapter 2 to simultaneous second-order

This book was originally written in Russian and translated equations. In Chapter 3 it is shown how to decompose a

very efficiently by Scripta Technica, Inc. It contains an set of simultaneous first-order equations X = Ax + b into a

advanced treatment to a rather specialised topic and is only number of sets of mutually independent equations, and the

suitable for mathematical graduates. It describes some complications of solving these when A has some multiple
methods for obtaining approximate solutions to linear charaqterlstlc values with non—lm;ar elemqntary divisors is
differential equations in which the coefficients vary slowly in given in Chapter 4. The method is generalised in (.fhapter.S
time. If ¢ denotes the normal independent variable and e is to the solution of equations in Banach space. Fi inally, in
some small positive parameter, then a slow time variable Chapter 6 the solution of a particular hyperbolic partial

T = et is introduced, and equations are considered whose differential equation is described in which the method of

coefficients are functions of 7. This occurs, for example, in separation of variables is used to produce a system of ordinary

a single equation in which the coefficient of the highest Fllﬁ‘erentlal equations which are solved by the method given

derivative is small, or in Sturm-Liouville equations in which in Chapter 5. ) :

large values of the eigenvalue are being considered. The The book is well printed and only a small number of
basis of the methods is to find an approximate solution in misprints were noticed.

the form of an asymptotic series in € combined with an

oscillatory term. V. E. Price (London)
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