Neville’s method for trigonometric interpolation

By D. B. Hunter*

In this note, the well-known interpolation methods of Aitken and Neville are adapted to

trigonometric interpolation.

(First received May 1968 and in revised form July 1968)

1. Introduction

Suppose that f(x) is a periodic function of x, specified
by its values yy, yy, . . . , ¥, at (n + 1) distinct points
X = Xg, X, - . . , X, The problem in trigonometric
interpolation is to approximate f{x) by a trigonometric
polynomial, f(x), say, which agrees with it at the data-
points. If we assume, for convenience, that the period
of f(x) is 2m, and that all the values x; i =0, 1, ..., n),
lie in the range —= < x; < =, the interpolation poly-
nomial takes the form

— m

f(x) =ay + 21 (a,cos rx + b, sin rx). 1)
The choice of m in (1) depends on the form of the
required fit; this point will be discussed below.

A number of formulae for trigonometric interpolation
have been devised—see, e.g. Whittaker and Robinson
(1944), Berezin and Zhidkov (1965). The object of this
paper is to adapt the well-known interpolation methods
of Aitken (1932) and Neville (1934) to the problem.
We shall express the results in terms of Neville’s form
of the method.

In what follows, we shall denote by f;;(x), where i < j,
the trigonometric polynomial of the required form which
assumes the values y;, y;4;, . . ., y; when x = x;,
Xit1, - .., X. Thus

J(x) = foul). @

2. Half-range series

The simplest form of the algorithm occurs when all
the data-points x; lie in the range (0, =), and a fit con-
taining cosine terms only, or sine terms only, is required.
We consider the two cases separately.

Case 1. Cosine series

We assume here that all the x; lie in the range
0 < x; < 7. If we stipulate that m = n, it can be shown
(see, e.g. Berezin and Zhidkov, 1965) that there is a
unique polynomial of the form

fx) = éio a,cos rx 3)

which agrees with f{x) at the data-points. This poly-
nomial may be generated as follows.
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First, set
fiilx) =y, (=0,1,...,n). “)
Then generate the approximations f;;(x) by the relation
Jis(x) =

(cos x; — cos x)f; ;—1(x) — (cos x; — cos X)f;; l,j(x).
€OSs X; — COS X;

©)

The calculation may be conveniently set out in tabular
form. Table 1 illustrates the case n = 4. After the
first column each entry in this table is obtained from a
pair of consecutive entries in the preceding column,
using (5).

Note that this process is equivalent to applying to the
independent variable x the transformation ¢ = cos x,
and then applying Neville interpolation to the resulting
function of £.

Case 2. Sine series

Here we suppose that all the x; lie in the range
0 < x; <. If we stipulate that m = n + 1, there is
a unique interpolation polynomial of the form

n+1

f(x) = X b, sin rx. (6)
r=1

Again, the polynomials f;(x) are generated by equa-
tion (5), but now the initial approximations are given by

fii(x) = y; sin x/sin x;. @)

3. Full-range series

If the points x; are spaced throughout the range
—7 < x; < m, the situation is more complicated, and
a variety of formulae exist.

Table 1

Calculation for half-range series

Joo  Jor Jo2 Jos  Joa

f'll f12 .flS f14

J 22 J23 J2a
S33 S3a
Jaa
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Table 2
Calculation for full-range series
Joo
.fl 1 f 02
Jo JSis Jos
f3 3 f 24 .fl 5 f 06
f 44 f 35 .f26
fS 5 f 46
Jes

Table 3

=

y

0-946 083
-028 685
-108 047
-183 958
-256 227
-324 684
-389 180
-449 592

btk etk ot ok
NV WND=O
el e e

However, if we stipulate that n = 2m (so that the
number of data-points is odd), it can be proved that there
is a unique approximation of the form (1). This is
provided by Gauss’s formula:

Fron "osin ¥ (x — x;)
J@ =2y G e =) ®
Jj#i

(see, e.g. Berezin and Zhidkov, 1965, chapter 2, §10).
A result equivalent to (8) may be obtained by a method
similar to Neville’s. For this method we again use (4)
to give the initial approximations. Further approxima-
tions are then obtained from the relation

fi-—l,j+1(x) =

O, j+ 1Jie 1,j— 1(%) — o 1,j+ lfij(x) + o q,ifit 1,j+ 1(%)

sin 3(x; — x;— 1) sin 3(x; 1 — x;— ) sin 3 (x; 4 — x;)
6]
where
o, = sin ¥(x; — x. + x; — x;)
sini(x — x,)sin} (x — x,). (10)

After some manipulation it can be shown from (10)
that

O jr1 — %141 T %y, = sin 3(x; — x;_y)
sind (x4 — x;p) sin3(x; — x;). (11)

Using this result, it is quite easy to prove (9) inductively.
The calculation may be set out as in Table 2 (for the
case n = 6). After the first column, each entry in the
table is obtained by combining three entries from the
preceding column, using equations (9) and (10).

the interpolation polynomial (1) is lost. A number of
formulae with m = n or n 4 1 are listed in Whittaker
and Robinson (1944), §140. These formulae are all
liable to fail under some circumstances. For example,
Poisson’s formula

Jo =3yl sin(x — x) (12)
i=0” ' j=o sin (x; — x;)
J#i

will fail if two of the abscissae, x; and x;, say, differ
by =, although this situation is, perhaps, unlikely to arise
in practice.

Poisson’s polynomial may be generated by formulae
like (9) and (10), with the factors 4 omitted. Here if
n is even the initial approximations are given by (4),
while if n is odd they are given by
__yisin (x —x;_y) —yi_gsin(x — xy)
fi— l,i(x) - sin (-xi — X 1)

(i=12,...,n. (13)

There appears to be no formula similar to (5) for
Poisson’s approximation.

2

4. Alternative method for equally-spaced data

If the points x; are equally-spaced, a simpler alternative
method can be used. For this we first move the origin
to the mean of the abscissae; that is, we change the
independent variable to

(14)
We then separate f(§)

E=x—x

where % is the mean of the x;.
into even and odd components:

If the restriction n = 2m is relaxed, the uniqueness of S(&) = u(é) +v(§) (15)
Table 4
&i cos §; — cos & fil(&)
0-05 —0-0007 9977 1-2417 7898 420 7324 0 7302 01
0-15 —0-0107 7895 1-2381 0739 420 8138 0 7345
0-25 —0-0306 3761 1-2307 8588 421 1774
0-35 —0-0601 7732 1-2198 6010

312
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where

u(§) = HAE + A-H]

v(€) = HAH — A—8)] (16)
Once this has been done, the negative values of £ can
be ignored, and separate interpolations carried out for
u(€) and v(§), using equations (4) and (5) for u(£) and
(7) and (5) for v(§).

If n is odd, so that the number of data-points is even,

the two calculations described above may be combined,
by setting

fi€} = u(€)) + v(€;) sin €[sin €. (17
(i=3n+1) to n),

and then generating the later approximations by (5), with

x replaced by &. The resulting polynomial contains

References

cosine terms up to degree $(n — 1) and sine terms up
to degree 4(rn + 1). If nis even we cannot combine the
two calculations in this way, due to the difficulty of
assigning a value for the second term on the right in
(17) when i = 4n, so that &; = 0. However, the final
result obtained in this case agrees with that obtained by
Gauss’s formula (8).

5. Numerical example

To illustrate the convergence of the methods, a
numerical example is given below.
Example Estimate the value of y when x = 1-38 from
the values in Table 3.

We shall use equations (17) and (5). Here x = 1-35,
£ = 0-03. The calculation is set out in Table 4. To
6 decimals, it gives y = 1-242 073.
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