The explicit solution of the equation of heat conduction

By G. M. Birtwistle

In this paper we examine the n-dimensional extensions of the finite-difference schemes proposed
by (a) Larkin, Lees, and Saul’yev and (b) du Fort and Frankel for the solution of the differential
equation u; =- u,,. The formulae obtained are explicit and stable for all values of the mesh ratios,
but these ratios are found to be limited in practice by truncation error considerations. A comparison
of the storage requirements and computing efficiency is made with other well known methods.

(First received November 1967 and in revised form May 1968)

1. Introduction

Consider the parabolic partial differential equation
governing the conduction of heat in n space dimensions

n qu
U =
t e’ bxlg, (1)
subject to the initial condition that u(x,, x,, . . ., x,; 0) =

f(xy, X3, . . ., x,) Where f is assumed to have a valid
Fourier series expansion in the region of interest. The
independent variables are taken to be bounded by
0< x4, %3, ...,%, < 1 and ¢ > 0, and we assume, for
t >0, that u takes the value zero on the bounding
hyper-planes.

A solution to (1) is sought by embedding a grid into
the region of integration and computing a finite-difference
analogue of (1), at the nodal points, for as many time-
steps as are deemed necessary. The following notation
has been adopted:

k as the step-length along the r-axis,

h; as the step-length along the x;-axis,

N; = 1/h;, (G=12,...,n

r; = k/(h;)>

ZZE, N:H(N]_l), RZZ",‘-

Jj=1 j=1

i=1
U = u(pihy, paha, - - -, Puhn; gk) = u(pjh;; qk)
where

p;i=0,1,2, .oNjforj=1,2,...,n
Finally, we define the operators I, T, E;, X; and D; by

U = U,

T™U = u(p;h;; (9 + M)k),

EYU = u(pihy, - . s pj—1hj—1,

(pj + M)hj, pjiihjs, - .

superfix omitted if M =1

X,=E, + E;! —2I,
?

o Publtn; 9K),

The n + 1 operators T and E; clearly commute.
One class of methods for the solution of (1) may be
written

(T — DU = S r{(sT + (1 — HDX}U
o<s<). (2

The classical explicit scheme, (2, s = 0), has its choice
of the n mesh ratios r; restricted by stability considera-
tions, which require R < 4.

(2,s = 1) is an implicit scheme, with no stability
restrictions on R, which requires the inversion of a
sparse square matrix of order N at each time-step. In
practice one would use (2,5 = 1) only in one space
dimension (n = 1), and use the effective Alternating
Direction Implicit methods of Peaceman, Rachford and
Douglas [1,8] for n =2 or 3. The A.D.I. methods
avoid the necessity of inverting a widely banded matrix
at each time-step and require merely the repeated cyclic
inversion of n tridiagonal symmetric matrices.

We shall examine the developments of two other
explicit methods for the solution of (1), namely

(a) the Saul’yev-Larkin-Lees semi-explicit schemes
[10, 6, 7] (abbreviated to SLL schemes) which
overcome the more punitive storage requirements
associated with the A.D.I. methods, although at
the expense of an enlarged truncation error;

(b) the du Fort-Frankel schemes (DUFF) which were
presented for the one-dimensional case in [2], and
subsequently extended by Evans [3] for the
solution of u,, + t,,xx = 0. The n-dimensional
DUFF scheme has comparable storage and com-
puting time requirements to the analogous SLL
scheme, and links between the two schemes are
explored in § 5.

In §2, we note the storage locations needed and
calculations required per mesh point for the standard
schemes listed below.

(a) Explicit

2,s=0) forn=1,2,3.
(b) Implicit

2,s =1) forn =1 only.
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Heat conduction equation

The A.D.I. methods of Peaceman and Rachford (PR),
and Douglas and Rachford (DR) forn =2 and n =3
respectively.

In § 3 and § 4, SLL and DUFF schemes are developed,
and the same computational details are noted for
comparison.

2. Standard explicit and implicit schemes

In this, and the next two sections, we are to discuss,
amongst other details, the calculations required per mesh
point, and we introduce the notation xM + yA4 + zD to
denote x multiplications and y additions/subtractions
and z divisions.

(a) Explicit
The classical explicit scheme is computed according to

TU = {(1 — 2RI + 2 r(E; + E; )}U. A3)

If the r; are all unequal, the calculation of each new
component of the vector TU requires (n + 1)M + 2nA4 +
OD. However, if the r; are all equal, each new com-
ponent of the vector TU needs but 2M + 2n4 + OD.

It is often the case that R = %, the maximum value
allowed by stability restrictions, and then the totals
listed above are each reduced by 1M + 14 + OD as
the coefficient of IU is now zero. But more importantly,
we are now able to step forward in time by computing
only half the unknowns at any time-level as those
unknown values of U on time-level g + 1 for which Zp;
is even(odd) are given entirely in terms of known
U-values on time-level g for which Zp; is odd(even). It
follows that we need compute over our grid only those
values of U for which Xp; 4 ¢ is either even (or odd),
with a consequent halving of our expected work total.

The storage requirements can be effectively minimised
to O(N) locations when R < } and O(N/2) when R = 1.

(b) Implicit
The fully explicit scheme (2,s = 1) in the space
dimension may be written as

I—rX)TU="U. “)

In higher space dimensions, n =2 or 3, we are
considering not (2, s = 1) but the PR method [8] and
the DR method [1], which in our notation are written

I — r X)T'2U = + r,Xp)U
EI - r:XSTU —a '(Jr- rlez)Ygz/zU }(PR) ©)
and

I —rX)T'V3U = (I + ryX, + r;X3)U

(I — r,X,)T?3U = T'BU — ryX,U

(I — r;X;)TU = T?3U — ryX;5U.

Thus for n =1, 2 or 3, the implicit methods we are
considering may be represented in the general matrix
form

}(DR) (©)

)

AUt = b (a known vector)
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for each of the n sub-steps, where the matrices A4;, are,
under a suitable re-ordering of the grid points, block
diagonal with N/(N; — 1) leading submatrices C; each
of dimension N; — 1(j=1,2,...,n). Under this re-
ordering, each of the C; are of tridiagonal form, with
components given by

2r; +1 i=m
0 otherwise.

As the 4, are block-diagonal, each sub-block can be
solved for separately, and one way of solving a matrix
equation of the form (7, 8) is to split the C; into the
product factors L; and U; with components

Wim i=m
(L)im= —1; i=m+41
0 otherwise
and
1 i=m
Upim = tji i=m—1
0 otherwise

respectively, where L; and U; have the same dimensions
as C;, The X (2N; — 3) unknowns, w;,(m =1, 2,
...N;—D,and ¢t; i=1,2,...N; — 2) are uniquely
determined, and these decompositions are stable without
interchanges due to the diagonal dominance of the C;.

Having computed and stored the unknown elements
of the matrices L; and U; the number of calculations
required per mesh point for each of the n substeps totals

n=1 2N +24 + 1D
r; unequal r; equal
=24M + 44 + 1D 3M 444 + 1D
=35M + 64 + 1D 3M + 64 + 1D.

The number of storage locations required must include
registers set aside to contain the components w;, and
tj; of L; and U;. For n = 2, or 3, these will generally
form a negligible proportion of the total. The number
of locations required is then

1 OGN)
2 OQ@N)
3 O@B3N)

o

n
n
n

which are appreciable increases over the totals for the
explicit schemes grouped as (2, s = 0).

3. The SLL schemes

The basic SLL scheme is obtained from (2) by sharing
the first term on the latter’s right hand side between the
forward and present time-levels. Collecting terms,

{I+ SrsI — E)TU ={I + S r(s(I — E)) + X;}U
6))
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Heat conduction equation

which can be written in matrix form as
C(s)u, +1 = D(S)u,. (10)

C(s), the matrix representation of the space operator on
the left hand side of (9), is a triangular matrix, and the
solution of (10) is thus merely a process of forward
substitution. (Equally well one could interchange the
roles of E; and E; ! in (9) and produce another analogue
of (1). There results a matrix problem which can be
solved by backward substitution.)

Expanding (9) in the form of a Taylor series, one
obtains

{1 + 2 r;s(—h;D; — 2D¥2 — DY6 — .. )}

ki, + K2, 2 + .. ) = 25r,(RD22 + KDY24+ .. ),
ie.

u, = Z(D%u + h3D$/12 + sk|h;D;u, + sk*/h;Dju,,)

k
+ E(le?u, —u,)+ ...
= X Dlu + O(h* 4+ (1 — )k + k/h).

Thus as h; —0 and k— 0, we also require k/h; —0
(j=1,2,..., n) for the scheme (9) to converge to the
correct differential equation (1) (unless s = 0, in which
case the scheme is the classical explicit formula (2, s = 0)).
If the step lengths are equal and we take

(.]: 1,2,...,7!),

then in practice this implies that k/h = hr be ‘small’,
which is more favourable as /4 decreases. The results of
some numerical experiments are presented in § 6, and
further comments on this scheme are left until there.
As the matrix C(s)~1D(s) does not have known
eigenvalues, we analyse the stability of (16) by the
Fourier series method. This assumes a set of errors
e(p;h;; q) exists at the grid point (p, Ay, pyhs, . . ., Pahy; gk),
and that e(p;h;; q) has the finite trigonometric expansion

hth,err

Ni—1 Np—1 n .
e(phi; ) = X ... EIA(p,-; q) EIICXP (icmPm)

=1 th=

where c,, = =t,,h,, and A(p;; q) represents the Fourier
coefficients which are not required. Stability is assured if
|1 4+ Zrs(1 — exp (ic,)|>|1 + Zr;s(1 — exp (ic,,)

+ 2 X rj(cos (c,) — 1)]
which implies

1 +s5Zr(l —cos(cp) > Zr(l —cos(cy)

ie.
1
=20 = sy
That R is not restricted when s = 1 agrees with results
given by Larkin [6]. In the one dimensional case, this
bound is certainly better than that derived by analysis of

the spectral norm of the matrix C(s)~!D(s) (see [10],
p- 37), and is considerably easier to obtain. In higher

R
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space dimensions, the work involved in attempting to
obtain the stability criterion by spectral analysis would
seem to be formidable.

Both Saul’yev [10] and Larkin [6] suggested ways of
improving (9). As (9) is unconditionally stable only for
s = 1, we follow Larkin in only using that value of s for
the suggested improvements. In this case, (9) simplifies
into

(T — DU = S r{(E; — DT + (E; ' — DU, (11)

and another scheme with similar properties is
(T—DU = Zr{(E;' — DT + (E; — }U. (12)

(i) Saul’'yev and Larkin suggested using these alter-
nately to produce an estimate of 72U from U via TU
by the formulae

I+ Zr(I—ENTU={—XrI— E YU 3
J+2rd—E-WIU={—Sri—Eptu. | 1P
Elimination of TU yields
{{—2ZrX;+Zr(I—E")YZr(l— E)T?U
={I+ZrX;+Zr(—E")Zr(— E)U.

Whilst this alternating scheme is obviously uncondition-
ally stable, examination of the truncation error, assuming
a valid Taylor expansion, shows (13) to approximate the
equation

u, = X (D2 + h2D*/12) + (Z (k/h;)2Du,)
— k(u,, — S D) + . ..

which represents (1) to within a truncation error of
O(h? 4 k* + (k/h)*). This is a useful improvement for
small (k/h), and the scheme (13) requires neither extra
storage nor computing time over (11) or (12) alone.

(ii) Saul’yev and Larkin also proposed using (11) and
(12) together to produce an averaged scheme for the
solution of (1). It follows that such a scheme is
equivalent to

I+ S — EDYI + S r(I — E- )} TU
=32 — [Zr,(I — E)P — [Er,(I — E; HBU. (14)

Saul’yev suggested treating (14) as a new formula and
solving it in that form, Larkin in the more tractable form
of solving for TU by both (11) and (12) separately, and
then averaging. The truncation error of this scheme,
which has the same left hand side opecrator as (13),
clearly contains a term of O(k2/h?).

It requires double the computing time and storage
space of (11, 12, 13) but it would be the only SLL scheme
to give symmetric solutions to symmetric problems.

In n space dimensions, both the basic SLL schemes
(11, 12) and the alternating form (13) require (n + 1)M
+ 2nA4 + OD calculations per point when the r; are
unequal, and 2M 4 2n4 + OD if the r; are all equal. If
R = 1, both these totals are reduced by IM + 14 + OD.
However, there is no possibility with these schemes of
computing over alternate points, as with the classical
explicit scheme (2, s = 0), and so the work total for
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(11, 12, 13) with R = 1 is the same as for (2, s = 0) with
R = 1. The number of storage locations required is
O(N).

For the Larkin averaged scheme (29), these totals are
doubled.

4. Truncation error and stability of the DUFF schemes
Du Fort and Frankel [2] suggested (for » = 1 only)
taking the unstable three-level Richardson scheme and
amending it by sharing the coefficient of U in it equally
between TU and T~ 'U.
In n dimensions, we would approximate (1) by
(T—T YU =2Zr(E; + E;' — T —T-")U.
A Taylor series expansion yields

2ku, + K3u,,,/3 + . . . = 2Z{kD*u + kh’D%u/12
Fo =R, — (12 — . . .

15)

or
u, = Z(D3u + h2D%u/12 — (klh;)*u,,) — k?u,,,J6 + . ..
ie.

u, = D + O(h* + k? + n(k/h)?).

For the stability analysis, we use the method detailed in

Householder [5]. We write the finite difference analogue
in matrix form as

(1 -+ 2R)u,,+1 = ZEerju,, + (1 — 2R)u,,_1

where the n matrices Y; are each representations of the
operators E; 4+ E; 1. The Y; thus have known eigen-
values and common eigenvectors. It follows from
Householder’s analysis that the stability of (15) hinges
on the magnitudes of the roots of the quadratic equation

(1 + 2R)p? — 23r;y;u — (1 —2R) = 0.  (16)

We have stability if |u;/ < 1 whenever the y; are
replaced by eigenvalues of the corresponding Y;. Since
the y; are of the form y; = 2 cos (7p;h;), it follows that
|Zr;y;| <2R and accordingly there is a v, dependent
upon y;, such that (16) may be replaced by

(1 4+ 2Rpu? —4Rcosv.p— (1 —2R) =0 (17)

for any choice of y;.
If the roots of (17) are complex, then they have equal
modulus and

ul? = (1 — 2R + 2R)| < 1.
If the roots of (17) are real, then
2R cosv + 4/[4R*cos? v + (1 — 4R?)]
e (I +2R)
and since R > 0 and 0 < v < =, this implies
0<4R?cos?v +1—4R2< 1,

and it follows that |u,| < 1.
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We note that if 1 — 2R = 0, then (15) becomes a two
level scheme and then that one of the roots of (17) is
zero. In this case, DUFF scheme (15) becomes identical
to (7, s = 0) when R = 1 in both formulae.

In [2], du Fort and Frankel pointed out that the
computations using (15, » = 1) could be performed in
two ways-under their so called ‘leap frog’ and ‘pyramid’
orderings. Both of these are of interest and both extend
easily ton > 1.

In the leap frog ordering only one-half of the mesh
values need be computed. For consider (15) for the
calculation of the approximation to u(p;h;; (p + 1)k).
Let us denote all points for which ¢ + XZp; is even as
E points, and odd as O points. Then all mesh points
considered are either E or O points and from (15) it
follows that if (p;h;; (¢ + 1)k) is an E(O) then it is
computed entirely in terms of E(O) points so that in the
course of using (15), only E or only O points need be
computed and stored. Thus as the computations proceed
from time-level to time-level, we calculate successively
the points for which Zp; is even on one time-level and
odd on the next, or vice versa.

Under the pyramid ordering we compute over one of
the planes ¢t + X p;h; = constant. Taking the positive
sign, this reduces to a two level scheme centred on
(pjh;; t), where ' =t 4+ X x;, and yet omitting that
time-level. 1In full

(T — T-YU = 23r{(E; — DT + (E;* — NT-1}U
(18)

which can be used over planes ¢’ even, or ¢’ odd, without
reference to intermediate levels.

Both these orderings reduce the expected work totals
and locations required by one-half. Per point we
perform (n + 1)M + 2nA + OD calculations for r;
unequal and 2M -+ 2n4 + OD for r; all equal. If
R = 1, the leap frog scheme becomes two level, and the
totals listed above are each reduced by 1M + 14 + OD.
O(N) locations are needed for general R under both
orderings.

5. Links between SLL and DUFF schemes

We first note that the DUFF leap frog and pyramid
schemes are centred about a mid time level, whereas the
SLL schemes are expanded about the backward level.
Suppose now we do an SLL-type expansion on the
classical unstable Richardson scheme instead of (2),
sharing the right hand side of (1) between the forward
and backward time-levels in the manner of (11, 12).
This yields a formula identical to (18) in form, but one
which is computed over lines ¢ = constant. It is
easy to show that with this ordering the formula is
stable for all values of r; and has truncation error of
O(h? + k% + k/h). Tt can, of course, be used in an
alternating manner which further improves this to
O(h? + k% + k?/h?).+ Since this new scheme can be
computed over alternate time-levels then it requires no

t In §6, these schemes are denoted by SLL*.
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more storage space than (9,s = 1). We have thus
shown that this new SLL-type scheme and the DUFF
pyramid scheme correspond exactly when computed
over the points (p;h;; t) and (psh;; t+ Zph))
respectively.
Now, consider the solution of the elliptic equation

2D = b(pjh;) (19)

(in matrix form
(I—L—-Ux=0»)

by (a) successive over-relaxation; (b) fixed parameter
first and second order Richardson methods.

(a) It is easy to show that the equation governing the
error e" of the nth iteration in the solution of (19) by
S.O.R.is

et —en = wX(Ejent! 4 E; 1 er — 21en)|(2zh3),
where z = X 1/h? and w is the successive over-relaxation
parameter. This may be rewritten as
el — e = (w22 — w)) . Z{(E; — Ier+!
+ (E;' — Den/h}  (20)
i.e. the altering of 2/e” into 2Ie"+! has no effect on
convergence provided that w is altered as shown. Now

(20) is the same form as DUFF pyramid and the new
SLL scheme, with

w2 — w)) =2k or = 4R/l + 2R).

Thus 0 < w < 2, and this completes the correspondence.

(b) The solution of (19) by the first-order, single
parameter («) Richardson scheme yields an error
equation

entl — e = («/2z) . T X e"h?
which is of the same form as (7, s = 0) with
o2z =k ie. R=2a
Using the second-order Richardson method with fixed

parameters, o« and B, the error in the solution of (19)
obeys the equation

entl — e = (af2z) . ZX;e"[h3 + Be" — e~ 1)
which corresponds to DUFF leap frog with
of2z = 2k/(1 + 2kz) and B = 2kz — 1)/2kz + 1).
If « and B take their optimum values

_ (Wa — vby?
x = 4(v/a + v/b)? e TR

where a and b are the maximum and minimum eigen-
values of I — L — U, then a, b = —1 + /(1 — 1/R?).

and B=

6. Numerical results and comments

The methods outlined were programmed to solve
parabolic problems in one, two and three space dimen-
sions. One such problem was

U, = Uy, uO0,)=ul,t)=0, t>0
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subject to the initial condition

S1(x) = u(x, 0) = sin (mx).

For various values of 4 and r, computed results for
10°. u(0-5, ) are listed in Table 1 in the format group

u(0-5,0-2)
u(0-5, 0-4).
The rounded analytic solutions for 105 are

13891
1930.

Further numerical problems included the initial values

I 0<x<1
D=0 x—o,1

and
fix) =1— |1 —2x|,

and analogues of all three in higher space dimensions.
The results quoted in Table 1 give an indication of the
behaviour in the remaining problems.

Typically, we note that with the SLL and DUFF
schemes the error does indeed diminish with decreasing
k/h, and also that the Averaged SLL (14) and Alternating
SLL (13) schemes give very similar results.

In this example, the basic SLL scheme (9) gives better
results than either (13) or (14). This is not always so—
a counter-example is provided by the methods of Evans
[3] and Fairweather and Gourlay [4] for the solution of
Uy + Uyesx = 0. Their solutions are achieved by
splitting the fourth-order equation into an equivalent,
simultaneous second-order pair v, = w,,, w, = —uv,,,
each of which can then be solved by our techniques.
Given

v(x, 0) = x — x2 0<x«1
w(x,0) =0
v(0, 1) = v(1, 1) = w(0, ) = w(l, t) = 0,
Table 2 lists the error in computed values of u for

x=0-1,0-2,...0-5 at +=0-02 for A= 0-05 and
r = } for SLL (9) and the Alternating SLL (13) schemes.

Table 2

Error in 107 . u

VALUE OF Xx

METHOD . O0-1. 0:2. 0:3. 04. 05.

SLL . —301 —619 —669 —510 —134 .

AV.SLL . 12 63 43 —7 —47 .
Error in 10°. u,,

SLL . 331 2726 1694 2503 2555 .

AV.SLL . 301 924 442 202 290 .
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Table 1
Value of 105 . u
r=1/2 r=2
VALUE OF h VALUE OF h
METHOD . A=1/10 . h=1/20 . h=1/40 . h=1/80 . METHOD . h=1/10 . h=1/20 . h=1/40 . h=1/80 .
IMPLICIT 13435 13778 13863 13884 SLL . 12871 13661 13835 13877
1805 1898 1922 1434 1811 1900
SLL 14047 13930 13901 13894 ALT.SLL . 22754 16401 14551 14060
1960 1937 1931 5191 2686 2117
ALT.SLL 14658 14101 13946 13905 AV .SLL . 20143 16068 14511 14055
2146 1988 1945 4000 2572 2104
AV.SLL 14599 14094 13945 13905 DUFF . 634 11127 13223 13725
2129 1986 1945 —635 1216 1747
DUFF 13435 13779 13863 13884 SLL* . 8361 12710 13620 13825
1805 1898 1922 —892 1389 1799
SLL* 13829 13877 13888 13890 ALT.SLL* . 23538 16485 14556
1858 1912 1925 5548 2716
ALT.SLL* . 16292 14560 14067 13936
2647 2119 1979
r=1 r=4
VALUE OF h VALUE OF h
METHOD . h=1/10 . h=1/20 . h=1/40 . h=1/80 . METHOD . h=1/10 . h~=1/20 . h=1/40 . h=1/80 .
SLL 13829 13877 13888 13890 SLL . 8361 12710 13620 13825
1858 1912 1925 —892 1389 1799
ALT.SLL 16292 14560 14067 13936 ALT.SLL . 18704 23538 16485 14556
2647 2119 1979 3712 5548 2716
AV.SLL 15877 14511 14061 13935 AV.SLL . 31716 21566 16230 14525
2508 2104 1977 10010 4600 2627
DUFF 11354 13268 13736 13852 DUFF .—29408 —35 11061 13211
1265 1759 1887 —32425 —654 1203
SLL* 12871 13661 13835 13877 SLL* . 8276 12670 13609
1434 1811 1900 —953 1378
ALT.SLL* . 22754 16401 14551 14060 ALT.SLL* . 44392 23918 16533
5191 2686 2117 20254 5725
In computing the SLL solutions in the one dimensional (which is also the form of the DUFF scheme in one space
case, we are in fact solving a scheme representing dimension). It is easy to show that if the attenuation

for ‘small’ a.

U + Up = Uyy
Subjected to the transformation
X—>Xx

t—>t+ ax/2

this equation becomes

o2

"Z'uu + U, = uy,

factor to w, = u,, is A, say, then the corresponding
attenuation factors to (21) are

2{—1 + /(1 + Aa?)}/ a2
or

Q1) )\—%az)\z—i-...
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This shows why « ‘small’ is a necessary condition for an can use a large value of R in them with more safety than

accurate solution. (See also du Fort and Frankel [2], in SLL schemes. Although they do require more work-

pp. 142-144.) ing space, this is only likely to be serious in three
The reported results seem to indicate that out of the dimensional problems on a small computer.

range of SLL and DUFF schemes (9) and (13) are to be
preferred, and that a ‘small value’ of (h/k) would be less

than 1/40, say. For very small values of 4 (1/80 or less) Acknowledgements

the schemes (9) and (13) can still therefore be competitive. The author would like to acknowlege use of the
From the list of operations necessary per point, it can facilities of the Computing Laboratory of Sheffield

be seen that the Implicit and A.D.I. methods are not University, and of Norsk Regnesentralen, Oslo, where

much more expensive than the Explicit schemes, and one the computations were performed.
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Book Review

Numerical Integration, by P. J. DAvis and P. RABINOWITZ, and functional analysis. The topic of multi-dimensional
1967; 230 pp. (Waltham, Massachusetts: Blaisdell integrals follows and includes a large section devoted to
Publishing Company, $7.50.) Monte Carlo methods. The last chapter deals with automatic

This monograph is intended to give a concise but compre- integrgtion schgmes, 'which are clgssiﬁgd as adaptive or non-

hensive account of the available formulas and methods for adaptive and iterative or non-iterative, and has special

the numerical evaluation of integrals. The subject is pre- sections devoted to Romberg’s scheme and methods using
sented from the application point of view and the treatment Chebyshev polynomials. The book is concluded by five
is modern and computer oriented. appendlpes containing a reprint of the article ‘On the Practical

Chapter 1 contains an introduction to the concept of Evaluation of Integrals’ by M. Abramowitz, some FORTRAN
numerical integration and also gives some useful analytical programs, and bibliographies of ALGOL procedures, tables,
background material. Chapter 2, by far the longest, deals books and articles.

The text is exceptionally well written, and very well
organised, and the link between theory and application is,
throughout, strongly forged with the help of numerous

with approximate integration over a finite interval and
includes special sections on the treatment of periodic functions,
rapidly oscillatory functions, contour integrals, improper

integrals and indefinite integration. In Chapter 3 is a brief illustrative examples. The authors have carefully dug into
description of special methods and formulas for integration the literature and conclqded each section with a useful sgt
over an infinite range, while Chapter 4 covers the subject of of references. The book is a ‘must’ for any one interested in
error analysis and includes a treatment of the effect of round- the practical evaluation of Integr als, and will ‘undoubtedly
off error following the general analysis given by J. H. be of great value to all who wish to make a serious study of
Wilkinson. The effect of truncation error is analysed through numerical integration.

Peano’s theorem, differences, the theory of analytic functions, P. C. CHAKRAVARTI (London)
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