On a generalised alternating direction implicit method for

solving Laplace’s equation

By Apostolos Hadjidimos*

This paper describes a generalized A.D.I. scheme involving an extra parameter which is equivalent
to Guittet’s scheme for solving Laplace’s equation over an m-dimensional supercube. In addition
the ‘model problem’ in the 3-dimensional case is treated but the method using the alternative
generalisation is applied with the parameter sequence of Douglas, unlike Guittet’s which has a

fixed parameter.

(First received February 1968 and in revised form May 1968)

1. Introduction

For the numerical solution of the model problem many
alternating direction implicit methods have been pro-
posed. Among these there are those of Peaceman-—
Rachford (1955), Douglas—Rachford (1956), and Douglas
(1962). Peaceman and Rachford solved the problem in
the 2-dimensional case by using a parameter r varying
during the iterations. Douglas and Rachford solved
the problem in the 2-dimensional case as well as in the
3-dimensional one, although their iterative method was
inferior to that of Peaceman-Rachford’s as far as the
2-dimensional case was concerned. Finally, Douglas
proposed a method to solve the problem in the 3-dimen-
sional case by using a set of iteration parameters. It
must be mentioned that either Douglas-Rachford’s
method or Douglas’ method is convergent for any fixed
r >0 in the m-dimensional case (m > 2) and that
Douglas’ method is superior to that of Douglas—
Rachford’s for at least m =2 and 3. Moreover,
Douglas’ method is equivalent to that of Peaceman-
Rachford’s when m = 2.

Samarskii and Andreyev (1963 and 1964) solved the
same problem in the 2 and 3-dimensional case by con-
sidering different difference equations to approximate
Laplace’s equation, and used sets of iteration parameters
based on the idea given by Douglas.

Recently Guittet (1967) generalised the methods of
Douglas-Rachford and Douglas in the m-dimensional
case (m > 2) by introducing an extra parameter. He
also found optimum values of that extra parameter as
well as of the fixed parameter r for all values of m.
Here it must be stressed that Guittet’s scheme is not a
natural generalisation of Douglas-Rachford’s and
Douglas’ scheme, as far as each individual step of an
iteration is concerned. The generalisation is in the sense
that the iterative matrix in Guittet’s scheme is a general-
ised version of the iterative matrices involved in the
other two schemes.

Another recent paper devoted to the solution of
Laplace’s equation is that by Fairweather, Gourlay and
Mitchell (1967). They proposed the so-called ‘Improved
Douglas scheme’ which is of an order of accuracy higher

than all the corresponding ones in the previous papers,
and used the set of iteration parameters of Douglas as
it had been implemented by Samarskii and Andreyev
(1963).

In the present paper we propose an equivalent scheme
to that proposed by Guittet which is an actual general-
isation of Douglas-Rachford’s and Douglas’ schemes.
With either Guittet’s scheme or ours we work out the
model problem in the 3-dimensional case by using the
set of iteration parameters proposed by Douglas (1962).
Moreover, a comparison of the number of calculations
needed to solve the 3-dimensional model problem shows
that the method we propose is always superior to
Douglas’ and when the number of mesh subdivisions is
large (approximately > 17) it is superior to Guittet’s.

It is intended that a comparison of the methods of
Samarskii and Andreyev (1964), Fairweather, Gourlay
and Mitchell (1967) and the one we propose will be
given in a forthcoming paper.

2. General scheme proposed

Our problem is to find numerically the solution of the
equation

s Xm)
s X)) =0 (21)

uxle(xl, x2’ LIRS xm) + uxzxz(xb x23 .
+ “ o + u_xmxm(xl, X2y o o

with (x;, x5, . . ., X, )eR, where R is the unijt supercube
(unit square or unit cube when m = 2 or 3 respectively)
with boundary I" and u(x,, x,, . . ., x,,) is prescribed on I.

We suppose there are N =1 equal subdivisions in
each co-ordinate direction. As is known, this problem
can be transformed into a matrix problem which approxi-
mates (2.1) with a (2m + 1)-point formula. The arising
matrix problem is of the form

Xy, + Xy 4. .+ X u=g (2.2)

where u is the approximating solution (N — 1)"-dimen-
sional vector, g is a known (N — 1)™-dimensional vector
which comes from the boundary conditions and
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Laplace’s equation

X;li=1,2,...,m is real symmetric positive definite
(N — 1)y x (N — 1) matrix which after suitable per-
mutation transformations is the direct sum of tridiagonal
matrices (see Varga, 1962).

We propose the following generalised iterative scheme
for solving (2.2)

(U + rpp  Xu® tUm = [(I + 1,11 X))
— Wl Z_ IX,-]u(P) + wryi1g

T L r . X)uetilm) — y(p+(G—1)/m)
( + p+1 j)
+ rp XuP forj=2,...,m 2.3)

where 4 are the vector iterates of u, r,,; > 0 constant
during an iteration, I the identity matrix and w a constant
to be defined. The proposed iterative scheme (2.3)
simply reduces to the Douglas—Rachford iterative
scheme for w = 1, while for w = 2 it reduces to the
corresponding Douglas scheme.

Under the boundary conditions mentioned above all
X/sli=1,2,...,mcommute. Thusifweputr=r,, >0
then from equations (2.3) by solving we can get after
some elementary matrix operations.

uPtD = TP + wr(l +rX,)"'...(I +rX;)"!

I+rx) g (24
where

T,=1—wr(l +rX,)"'...d +rX,)!

T+m0) 3 X @)

is the iterative matrix of the procedure (exactly the
same as in Guittett’s scheme).

If now scheme (2.3) is convergent then for p large any
intermediate solution w®+Ji/m|j=0,1,..., m is an
approximating solution of (2.2). This does not happen
in Guittet’s scheme where only for j =0 and m is
uPtilm) an approximating solution of (2.2).

From (2.5) one can readily see that the eigenvalues of
T, are

= (2.6)
I (14 rxy)

i=1

where the x;;’s are the (N — 1) eigenvalues of X.

Therefore for the convergence of T, we must have

<ty .. <L Q.7)

It is clear that w must be positive for otherwise the
eigenvalues of T, would be greater than 1.

As one can see from the above, w > 0 is a necessary
and sufficient condition for t5, ..., < 1. Therefore
for specific values of m and r one perhaps can find a
value of w > 0 for which (2.7) is valid and, moreover,
for which either the asymptotic rate of convergence is a
maximum (this is what has been done by Guittet) or the
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number of calculations needed to reduce the norm of
the matrix operator that maps the error vector e(® to
the error vector e” below a preassigned ¢ >0 is a
minimum (this is what we shall do in the following as
far as the 3-dimensional case is concerned).

3. 3-dimensional case (m = 3)

In this case the eigenvalues of the iterative matrix T,
are

tflfzfs =l—w
rpr1i(X1n + X2 + X3p)

3.1
A+ rpp X1 ,)(A + 1y 1 X2,) (1 + 1y 1X37) (3.1)
where
Xy = 4 sin? 2N , Xap, = 4 sin? fﬁ
X3y, = 4sm2 |1 4,993 < N—1. (3.2
Let us put
{=dr,, &= smzﬁ fori=1,2,3and (3.3)
a=(&,b= (&, c= &, (3.4
Because of (3.3) and (3.4), (3.1) takes the form
_ _ _ (@a+b+o
p=r@bO=t =1 =00 a0

3.5

We use, instead of a fixed ¢, the sequence of parameters
{{n=1,2,...,ny defined by Douglas (1962) in the
following way:

o n—1 ., T
{,,:;L(E) sin 2il—vln=1,2,...,n0 3.6)

where n, is such that

() e gy o = () sy 6

and

< cos2 <1<

O<p=cosisy

< v (u, v constants
to be determined). (3.8)

Consider now any triple (a, b,c) for which say
a> b > c. If we iterate n, times with the parameter
sequence (3.6) then for at least one value of n = n*|n
=1,2,...,n, we shall have

p<aso

and therefore
c<b<<axgw.
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Laplace’s equation

Moreover
b> =Lty > p(h)

n*—1

-2 2
sin—2 >—sin
2N

™

2N
py! : T3

>y(v) > ptan’ 55 (39)

because of (3.7). Consequently if we consider all the

possible permutations in the relationships a > b > ¢
then for an n = n* one of the following is satisfied

p<a<o, p.tan22N b,c<v or
p< b, ,utanZZN c,a<v or
p< <, ,utanzva< a, b <. (3.10)

It is understood that for any n = n* the triple considered

does not satisfy one of (3.10) any more. Instead we
have
_ Pyt 2 2
a,b,c= (¢, < #(v) sin— 2Ncos 2N
2 2 T
< pftan IN < v/tan IN'

(We take v/tan2 as an upper bound for a, b, ¢ instead

2N

2
2N for v/tan 2N>1 which facilitates the

analysis in finding some extreme values of the function
flater.)

A lower bound for a, b, ¢ when n 5 n* can be found
in the same way as in (3.9). Therefore for any n = n*
we have

of ,u,/tanz

IN @3.11)

/u,tan2 < a, b, c < v/tan?

2N
Let us call
a+b+c
, b,
J=lab 9= T an+ o0 + o
By taking derivatives we can very easily prove that
the maximum value of f, when a, b, ¢ satisfy (3.11),
wand v (3.8) and N > 3 is given by

>0. (3.12)

2u tan2 + v/tan2

2N

(1 + p tan? va) (1 + v/tan? ﬁ/)

In the same way we can prove that if a, b, ¢ satisfy one
of the conditions (3.10), u and v satisfy (3.8) and N > 3
then the maximum and the minimum values of f are
given by

(3.13)

2u tan2 sv To

fmax = max

(1 + w tan? va) (1 +v)’
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y-{—ptanz— +

(1 +,u.)(1 +p,tan227V)(1 +v)

3v
7 \¥ (1 +v)°

2u tan? 5\, +

fmin = min (314)
2
(1 —+—p,)(1 + p tan 2N
respectively, but

2u tan2 v T°

(1 +ytan2§—N) 1+

p,+,u,tan2——+v

4+ (1 +ptan?53) (1 +v)

,u(l — tanz%) (v —1 +p.tan22N) o

(1 +;L)(1 p tan? 2N) 1 +v

Therefore

2u tan2 5N T

Smax = (3.15)

(1 +p.tan2ﬁ) (1 +v

For the sake of convenience we take the two expressions
giving the minimum in (3.14) equal. Hence

w+2u tan2

2N 3v

(s

Fnin = (3.16)

¢! —}—,u)(l + p tan? 2_N)

We are now in a position to choose w as a function of
N, p and v in such a way as to give an optimum result.
First of all we can observe that the possible range of
w is limited from the fact that we must have —1 < p < 1
for all the triples (a, b, ¢) which satisfy (3.11). This gives
—I<l—owf<lor
0< w< 2/ hax- 3.17)

With the above permissible range for w one can easily
see that |p| is bounded by 1 for all the triples (a, b, c)
which satisfy one of (3.10). It is clear that the greatest
efficiency is achieved when 1 — wf,,i, = — (1 — Wfpax)
that is when

w = 2/(fmax +fmin)'
We distinguish two cases

Case 1 2/(fmax +fmin) < 2/fr*nax
In this case w is chosen as in (3.18) and satisfies (3.17).

(3.18)
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Laplace’s equation

Moreover we have
|P| < 1— wfmiu = p(l"" 'l)).

Case 2 2/f:mx < 2/(fmax +fmin)°

With o in the range defined by (3.17) we have
1 — wfpyin > — (1 — @fy0y). Therefore |p| satisfies
the same inequality as in (3.19). The minimum value
of the bound of |p| takes place when w is maximum. So

= 2/ tan. (3.20)

General conclusion from these two cases examined is
that w is given by

w = min {2/ffnax9 2/(fmax +fmin)} (322)

where f }.x s finaxs fmin ar€ given by (3.13), (3.15) and (3.16),
respectively, and that in either case the bound for |p| is
given by (3.19).

We come now to study a little more the relationship

(3.19)

3.16). B idering the functi —a b
(3.16). By considering the function y(v) = T

a function of » we can form Table 1.
From the table we can see that for N > 3 and for all

l] for which

values of p € (0, cos? N

T
2
p -+ 2p tan IN 3

0< - 2<'8'
a+w(1 +p.tan227v)

Table 1
v — 00 —1—e —1+4€ 0 1 +o0
y(v) 0,/ 400 —0 0,/ $#N\%\ 0
y'(©) + 0 —

the equation (3.16), where » is the unknown has three
roots belonging to the intervals (— oo, —1), (0, 1) and
[1, + o), respectively. We are only interested of course
in that root belonging to the third interval.

It is known (see Douglas (1962)) that for a fixed N > 3
the number of calculations required to solve the model
problem to a given accuracy is minimum for that pair
(u, v) for which log p(u, v) log (u/v) is a maximum. By
using the KDF9 computer of the University of Liverpool

we have found for N = 3(1)50 and u = 0-01(0-01) cos? %,

the corresponding values of v, w; = 2/f k.,
@3 = 2/(fmax + Fmin)s p(p, ¥) = 1 — min {w,, 02} fmin
and z = log p(u, v) log (u/v). From the results we have
selected for each value of N = 3(1)20 and N = 25(5)50
those pairs (i, v) for which the corresponding value of
z = log p(u, v) log (u/v) is a maximum. These selected
results are set out in Table 2.

We now compare our method with Douglas’ and
Guittet’s. We can very easily see that our method is
better than that of Douglas for all values of N > 3.
This is apparent from the fact that for the same values

Table 2
Optimum parameter values

N u v 1 (073 p(u, v) z

3 0-29 1-35319559 2-86158800 2-33104028 0-27379785 1-99530706
4 0-32 1-47031830 2-45391131 2-30575465 0-32533689 171231595
5 0-35 1-47402177 2-29242497 2-28860084 0-33167970 1-58675371
6 0-37 1-46727495 2-20507063 2-27836085 0-35374694 143162689
7 0-35 1-57928583 2-13942520 2-27192443 0-40928135 1-34609891

8 0-35 1-60635042 2-10497610 2-26725868 0-42705848 1-29649021
9 0-34 1-66501886 2-07982656 2-26389304 0-45113357 1-26454932
10 0-34 1-67898437 2-06412969 2-26141422 0-45925271 1-24271198
11 0-34 1-68941145 2-05267780 2-25954529 0-46518236 1-22696254
12 0-34 1-69739646 2-04405921 2-25810397 0-46964866 1-21520718
13 0-34 1-70364351 2-03740629 2-25697043 0-47309862 1-20618849
14 0-34 1-70862096 2-03216110 2-25606363 0-47582004 1-19911149
15 0-34 1-71264989 2-02795119 2-25532731 0-47800528 1-19345223
16 0-33 1-75855916 2-02385689 2-25464255 0-49135927 1-18891171
17 0-33 1-76136377 2-02109969 2-25413486 0-49279073 1-18517218
18 0-33 1-76371842 2-01879573 2-25370796 0-49398720 1-18205306
19 0-33 1-76571428 2-01685057 2-25334565 0-49499757 1-17942372
20 0-33 1-76742058 2-01519323 2-25303557 0-49585860 1-17718631
25 0-33 1-77312163 2-00969299 2-25199731 0-49871727 1-16977974
30 0-33 1-77622830 2-00671970 2-25143013 0-50026332 1-16578781
35 0-33 1-77810487 2-00493181 2-25108705 0-50119324 1-16339136
40 0-33 1-77932419 2-00377338 2-25086394 0-50179587 1-16184020
45 0-33 1-78016076 2-00298007 2-25071078 0-50220861 1-16077865
50 0-33 1-78075947 2-00241306 2-25060112 0-50250364 1-16002027
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Laplace’s equation

w and v, p(u, v) < pp(u, v) (D denotes Douglas) for it
can be proved that w = min {w;, w,} > 2. It is also
obvious that as N— oo then w—2 so our method
tends to that of Douglas for very large values of N.
The number of iterations needed to reduce the norm
of the matrix which maps the error vector e(® to the
error vector e below a preassigned € > 0 is given
approximately by (see Douglas (1962))

2 log tan %v,log €

Py (3.23)

,Pp ~ .

P 7 log p(u, v) log (u/v)
in either our or Douglas’ case, while the same number
in Guittet’s case is given by

(3.24)

where p* is the amplification factor in Guittet’s scheme

given by
[l — (tan2 2777\/ 1/3]2 [1 +2 (tan2 %V)m]

13
143 (tan“ %{) + 2 tan? 2%\,

(see Guittet (1967) page 211.)  (3.25)

By using the computer we have found that for
p=0-01 (0-01) 1-00 the minimum P, is achieved
when p = 0-33, where v = 1-78331472,

pp(p, v) = 0-50375940 and
log pp(u, v) log (n/v) = 1-15679610.

The insertion of the parameter w with its optimum
value for the chosen value of N does not substantially
alter the number of calculations to be performed.
Consequently we can suppose that the number of cal-
culations needed to perform one iteration in any of the
three schemes is the same (which is not far from the
truth) then in order to compare these three methods it is
sufficient to compare the numbers Py, P, and P or
equivalently the numbers p,, p, and p, where

Pg ~ log ¢/log p*

*

pr = — Pgllog e, p, = — Ppflog e

and p, = — Pg/log e(e < 1). (3.26)

By using the computer once again we have found for
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N = 3(1)20 and N = 25(5)50 different values for these

numbers which are presented in Table 3.

Table 3

Comparison of calculations in the three methods

N Ph Pd Pg
3 0-55059810 0-94970262  0-38044178
4 1-02945206 1-52381839 0-59011434
5 1-41695237 1-94360478  0-80240989
6 1-83980604 2-27690584 102318241
7 2-19499821 2-55419663  1-25357223
8 2-49117333  2-79200616  1-49358114
9 2-74471725 3-00038211  1-74287160
10 2-96565909  3-18592021 2-00101165
11 3-16143766  3-35319732  2-26756054
12 3-33702673  3-50552603  2-54209959
13 3-49610919  3-64538459  2-82424212
14 3-64147289 3-77467731 3-11363503
15 3-77527084  3-89490024  3-40995723
16  3-89900442 4-00725073  3-71291673
17 4-01423369 4-11270240  4-02224762
18  4-12205871 4-21205786 4-33770713
19 4-22337501 4-30598674 4-65907291
20 4-31892626 4-39505361  4-98614075
25 4-72905431 4-78213223  6-70088982
30  5-05872546  5-09804665  8-53500483
35  5-33456539  5-36497943 10-4747261
40 5-57182050 5-59611590 12-5096571
45 5-78004000 5-79993918 14-6316260
50 5-96560479  5-98223185 16-8340134

As one can see from Table 3 Guittett’s method is the
best for N > 3 until approximately N = 16. But from
approximately N > 17 the method we propose is the
best.
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