Note on a general finite-difference formula for the solution of

axially symmetric fields

By T. J. Randall*

A finite-difference formula is derived for use near curved boundaries and in regions with composite
media. A method of storing the coefficients economically and with easy access is given so that the
formula can be written as a procedure.

(Received March 1968)

1. Derivation

Consider a three dimensional region with axial sym-
metry and let the plane of symmetry be covered with a
net having a square mesh of lengtha. If ¥V = V(r, z) is,
for example, the electric potential function in the region
then V satisfies Laplace’s equation
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where r is the distance from the axis of symmetry and z

is the distance from a fixed plane perpendicular to the
axis.

Denote ¥(rg, zy) by Vy, V(ro — hya, z,) by

Vl! V(ro, Zy + hza) by V2, V(ro + h3a, Zo) by V3 and
V(ro, Zy — h4a) by V4 where 0 < hl’ hz, h3, h4 < 1.
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Fig. 1

Divide the plane of symmetry into four regions with
dielectric constants K, K,, K; and K, (see Fig. 1).
Using a Taylor’s series expansion about the point 0,
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Applying the generalised form of Gauss’s theorem to
a small cylindrical surface surrounding the point O gives

(Ky + K)(Ep)o = (K3 + K)(Es)o }
and (K| + K)(Ep)o = (K; + K3)(E3)o
where (E,)o, (E,)o, (E3)o and (E,), are the gradients at O

on the same side of the interfaces as the nodes 1, 2, 3
and 4, respectively. From (1) we obtain the equations
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Multiplying each of equations (2) by a factor and
adding gives

4 4
gl CVi="V, ;lci + Cyha(Ey)g — Cihaa(Ey)o

+ Cshya(E3) — Ciha(Ey),
bE4

+3 (Copar 222 2t i

* Department of Physics and Mathematics, John Dalton College of Technology, Manchester.

¥20Z Iudy 61 U0 3senb Ag 96891 ¥/2E€/E/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod



Axially symmetric fields
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Using equations (3) and (4) and making the sub-
stitutions

C = (K + Kyd,/hy,
C,= (Kl + Kz)d/hzy
= (K; + K3)ds/h;,
= (K3 + Ky)d/hy,
gives
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l_=21 GV.= Voé}l C; + (E3)o{(K, + K3)dsa — (K, + K3)d,a
+ dim@[(K, + Ky) — (K + K)l/2r}

dE
+ %{(KZ + KS)h3d3 + (Kl + K4)h1d1}02v3

VE
+ H(K; + Khy + (K + Kz)hz}azd 2

+ O(@)

OE
: + C(E3)o

4 4
i.e. ZC,K:V02C1+A_+B
i=1 i=1
+ O(a3).
dE dE.
From (4), A—— + 3—3 + C(E3)o =0

if A/1 = B/1 = C/; = K (say).

Solving for d,, d; and d and hence for C,, C,, C; and
C, we obtain the finite-difference formula
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hi{hy(Ky +Ka)(1—h3a/2r)+hy(Ky +K3)(1 4 hya/2r)y
2Ky + K5)
hy{hi(Ks + Ky) + hy(K; + Ky)Y
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Ile =K,= K;=K,= hl = h2 = h3 = h4 =1, equation

(5) reduces to the well known formula
Vo =~ 31 — a2V, + 1V, + 31 4+ a/2n)V; + 1V,

2. Storage of coefficients

Equation (5) is general enough to deal adequately
with a large variety of field problems. The only limita-
tion is that boundaries between media must coincide
with lines of the net. The author has used it to obtain
the potential distributions for a recessed dielectric slab
placed between a sphere and a plane (Binns and Randall,
1967) using the method of S.O.R. It has the advantage
that all points near curved boundaries or boundaries
between media can be relaxed by means of a procedure
in a program which has C,, C,, C; and C, as parameters.
The main problem involved is that of storing the coeffi-
cients for each special node efficiently and with easy
access. This can be achieved as follows.

(1) Tag all nodes of the net requiring special treat-
ment, e.g. by making the values negative and working
with the modulus (Forsythe and Wasow, 1960).

(2) Count these nodes and declare, dynamically, four
arrays C1, C2, C3 and C4, say, of length equal to this
number of nodes.

(3) Set the count i to zero and traverse the net in the
same order as when relaxing the values at the nodes.
Each time a negative value is encountered, increase the
count by one, calculate C;, C,, C; and C, and store
them in C1(i), C2(i), C3(i) and C4(i) respectively.

In this way they are stored in arrays with no wasted
space and are readily accessible by using the count in
each iteration, calling the procedure whenever a negative
value is encountered. By setting r to the machine
capacity the procedure can be used for two-dimensional
fields also.
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