Additive congruential pseudo-random number generators

By J. C. P. Miller* and M. J. Prenticef

Pseudo-random number sequences are needed in many calculations. Methods for generating such
sequences involving multiplication are familiar; the present paper considers a method of
generation involving addition and subtraction only, and discusses the applications of several tests
of randomness to the resulting sequencies.

(First received August 1967 and in revised form March 1968)

1. Introduction

The need for, and use of, sequences of pseudo-random
numbers on automatic computers for Monte Carlo
techniques and other purposes is well established. The
various types of sequence needed can be obtained (see
e.g. Tocher (1963)) from a uniform distribution on (0, 1).
Such a sequence, generated in a digital computer in an
exactly reproducible manner and satisfying specified
‘tests of randomness’ is called a pseudo-random number
sequence.

Downham and Roberts (1967), among others, have
carried out an investigation of such sequences generated
by use of multiplication and reduction to some modulus.
In particular, several tests of randomness (such as tests
of equidistribution and lack of correlation between
terms) are examined and discussed. The present paper
carries out a similar investigation on sequences produced
by addition of integers and reduction to some (prime)
modulus, the reduction being by subtraction rather than
by division. On many computers it is advantageous to
avoid multiplication or division, if used very frequently,
in favour of addition or subtraction, in order to save
time.

Additive methods for pseudo-random number genera-
tion have been tried in the past (e.g. Taussky and Todd,
1956), usually without much success. However, Green,
Smith and Klem (1959) were moderately successful with

Xi=X,_1+ Xj_, modulo 2’ G>n @)
u; = X;/2" (Fibonacci-like).

They found that sequences of this type ‘passed’ most
of the tests applied to them, but failed on one of the
more sensitive ‘run’ tests (see §3) until n was quite
large. They claim that the statistical properties of the
sequence improved as n increased, and required n = 16
(and thus storage of 16 previously generated numbers)
for completely satisfactory results. They also noted that
taking alternate terms from the sequence generated when
n = 6 gave quite good results.

In what follows, we describe what we consider to be a
relatively successful attempt at generating pseudo-
random sequences from the third order recurrence

X;=X;_, + X;_; modulo p, a prime 2
u, = Xj/p.

Our reason for using this relation is that (see §2),
provided p can not be written in the form c¢2 + 23d?
(c, d, integral), it is sometimes possible to generate
periodic sequences with period of order p2. This means
that p = 2003, for example, might, and in fact does,
provide sequences with period four million approxi-
mately, whereas p = 2347 = 222 + 23(9)? gives the much
smaller period 2346. Of course, length of period obtained
is not the only relevant criterion when looking for a
pseudo-random number generator, but it is certainly
necessary that the period shall be long compared with
the lengths of the sequences likely to be needed.

A number of statistical tests were used on the sequences
generated, and on the basis of the results obtained, it
appears that the two run tests (see §3) are the most
sensitive (in agreement with Downham and Roberts).

2. Number theory

In this section, we outline properties of sequences (X;)
satisfying X; = X;_, + Xj_; modulo p, with arbitrary
(integral) initial values X,, X;, X. The reason for
choosing this sequence for consideration here is that the
generation of successive terms is easy—it is difficult to
imagine anything easier—comprising

(i) the addition of two given numbers, and

(ii) a very simple reduction, modulo p; we subtract p
from the sum, test for sign, and restore p if
negative.

This supplies the basic sequence of pseudo-random
numbers with no multiplication or division. Sub-
sequent use is then the same as for a sequence of pseudo-
random numbers generated by any other method, e.g. by
a multiplicative method, though these sometimes yield
more immediately a number confined to the range (0, 1).
However, this can also be achieved directly with the
present method without division, perhaps most simply,
if 2¢+1 > p > 2% by appending to step (ii) a step (iii):
(iii) Test X; — 2*; if > 0, do not use X;.

If < 0, use X;/2%, in (1, 0], obtained from X; by

shifting.

Continue then to obtain X;, by step (i), etc.

It would seem best to choose p — 2 = & small, i.e.
p would be a prime just exceeding 2%; the result is that
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we use numbers in (2%, 0], easily reduced to (1,0] by
a binary shift rather than by a division.

In the tests below we have, however, preferred to
examine the whole range for randomness, by using a
division by p. The randomness properties of the partial
sequence—a major part of the whole (the exact propor-
tion depending on the choice of p)—may perhaps be
expected to be similar to those of the whole.

The sequence is known as the Perron sequence
when (X,, X;, X5) = (3,0, 2) so that X, = a" + b" + ¢"
modulo p, where a, b, c, are the roots of z3—z—1=0.
These sequences have been rather thoroughly studied,
largely because of the simplicity of their generation, and
so their structure is known and can be used to help
explain statistical results.

Clearly, X,, modulo p is periodic, for the number of
triplets Y, = (X,, Xp11» Xpr2) is at most p3—1,
excluding the triplet (0, 0, 0) which occurs only in the
null sequence. In fact, the starting values (Xo, Xy, X3)
must themselves eventually recur.

The polynomial z> — z — 1 cannot be factorised into
real integer factors, but it may be factorisable modulo p,
that is, there may exist integers y,w, such that
23 — (yp + 1)z — (wp + 1) has integer factors (that is,
integer zeros).

There are three cases:

23—z —1=(z — r)(z — s)(z — t) modulo p (A)
23—z — 1= (z — r)(z* 4+ rz — m) modulo p (B)
z3 — z — 1 has no factors modulo p ©
For example,
23—z —1=(z — 4)(z — 13)(z — 42) modulo 59
(case A)
23—z —1=(z — 2)(z2 + 2z + 3) modulo 5
(case B)
and, for

p=23,13,29,..., 2% — z — 1 has no factors modulo p.
(case C)

Other examples may be found by studying and
factorising n®> — n — 1 for integral n. Putting z=r
above, we find that if z3 — z — 1 factorises modulo p,
then p is a factor of r* — r — 1. Thus, if the factors of

-n3 —n —1 include p once (as n increases from 1 to
p — 1), then we have case B, if three times, case A, and
if not at all, case C.

Primes of the form 46¢ + 5, 7, 11, 15, 17, 19, 21, 33, 37,
43, 45 fall into category B. All others fall into categories
A or C. Those in category A are also expressible in the
form c¢? +.23d2.

Let g(z) = §, X,z", then
0
(1 — 22 — 23g(2) = Xo + Xiz + (X, — Xo)2?
+ Za(Xr — X, — X,_3)7.
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Hence from the recurrence relation (2)

1 —z2—2%g(@) = Xo + Xiz + (X2 — Xo)z2
(modulo p)

= s(z) (modulo p), say.

Thus g(z) = s(z)/F(z) is a complete specification of the
sequence generated, where

F(2) = 23f(1/2), and f(z) =23 — z — 1.

The sets of integral zeros of f(z) and F(z) modulo p
are isomorphic; all are non-zero and, given r an integral
zero of f(z) modulo p, there exists a unique integer R
such that rR = 1 modulo p and R is a zero of F(z).

h
Suppose F(z) = II F;(z) modulo p, 1 < h< 3, where
i=1

the F,(z) are irreducible modulo p. Then h=1,2,3,
correspond to categories C, B, A respectively, and
s(z)/F(z) is expressible in partial fractions as

3 5,2)F/2) — 3 gi(z), where deg(s;) < deg(F;) since
i=1 i=1

deg(s) < 2 < 3 = deg(F). For every p except p = 23,
which does not concern us here, the F; are distinct and
the above formula is valid.

Each g;(z) generates sequences all of the same length
(with period e; say), which is a factor of pk — 1 (we
exclude s(z) = 0 identically) where k; = deg(F;), and so
the period of non-zero sequences generated by g(z) is
e=lIcm (e, . . ., e,) provided s(z)/F(z) is in its lowest
terms. Details and proofs are given in Selmer (1966)
and Peterson (1961).

Consider category C, for which & = 1, deg(F) = 3,
and e divides p3 — 1.

In fact, e divides p2 +p + 1:

(f(@)? = (2* — z — )P = (2% — z¢ — 1) (mod p)

since all coefficients other than cross terms (which
contain p as a factor and hence vanish modulo p) are
1 or —1 and 1»=1, (—1)» = —1 modulo p, by
Fermat’s theorem. Hence f(z) and f(z?) have the same
zeros. Hence if r is a zero of f(z) then so is r» (and r**).
Now X,=r"+r? + r” modulo p satisfies the
recurrence, and since r!+7+r* =1 (product of zeros)
modulo p, e divides p? + p + 1, since all sequences have
the same period when F is irreducible.

For category B, h = 2 and F, gives sequences with
period e; dividing (p — 1), while F, gives sequences with
period e, dividing (p* — 1). Hence F can give sequences
with period e = lcm (e, e,) dividing (p> — 1), or e, or
e,. However, sequences generated need not be all of the
same length, for if the starting triplet is chosen so that
s(z) has either F; or F, as a factor then by cancellation,
F becomes either F, or F; respectively and the sequences
generated have periods e, or e, respectively. In all other
cases, g(z) is in its lowest terms and the period is
e = lem (ey, €5).

For category A, there are 7 possible periods (which
may be distinct): ey, e,, €3, lcm (ey, e5), Icm (e, e3),

¥20Z Iudy 61 U0 3senb Ag €269L /L E/E/ L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy wolj pepeojumod



Pseudo-random numbers

etc. Alldivide (p — 1). This is true provided the F; are
distinct, which is always the case if p 7= 23.

For p =23, f(z) = (z — 3)(z — 10)2. X, = 10" has
period 22 modulo 23, but here the general term is
A3" + (B + Cr)10” and r10” has period 22.23 = 506.

In hoping for reasonable ‘randomness’ in the sequences
generated, we must presumably restrict ourselves to runs
of length less than the period, which suggests rejecting
generators of type A, if we are using moderately small p.
Some periods are known of full length p? — 1 and
pPP+p+1, eg. 199 and 101 respectively. For
moderately small p, such as 2003 it is possible to obtain
very long sequences before repetition occurs, although
even then the sequence may not be statistically
satisfactory. When using very large primes, such as
67101 323, it is quite possibly irrelevant whether or not
p = c* + 23d>2

3. Statistical tests
(a) Uniformity

The range (0, 1) was divided up into 100 disjoint equal
intervals and a sample of 10000 pseudo-random numbers
was used. A count was made of the number of numbers
falling into each cell, and a standard Chi-square test of
goodness of fit applied. It should be noted that this
test should not be applied blindly when p is only
moderately large and just greater than a multiple of 100.
For then the expected number in each cell is not the
same for each cell when the integers obtained are in fact
uniformly distributed on (0, (p — 1)). For example (an
extreme case which would never arise in practice), for
p = 101, the expected number in the first cell is double
that in any other, as the integers 0 and 1 contribute to
it while only one integer contributes to each of the other
cells.

(b) Runs above and below the median

Given a sequence of numbers X, ..., Xy, the sub-
sequence X;_q, ..., X;4, is said to form a run of
length r above the median if X;,_; <4, X;>14,...,
Xit,-1>% X2, <% A run below the median is
similarly defined, and end runs are defined by i = 1 or
i+r=N-+1.

The expected number of runs of length r, not dis-
tinguishing between runs above and below, is approxi-
mately given by

E(r)=(N—r +3)2-0+D,
and the expected number of length r or greater by
Er)y=(N—r+2)2".

In all cases, N = 10000 numbers were used and a
Chi-square goodness of fit test of the number of runs of
lengths 1 to 9 inclusive and 10 or greater was performed.

(c) Up and down runs (see also Downham and Roberts
(1967))

Given a sequence of numbers X, ..., Xy, the
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subsequence X;_i, . . ., X;4,+1, is said to form a run of
length r ‘up’ if
Xia > X X <Xip < Xiga-.

Runs down are similarly defined and end runs are
defined by i=1 or i=N —r. In this case, using
analogous notation to test (b),

Eir)=2{N(r*+3r+1) — (r* +3r2 — r — d}/(r + 3)!

and

<X, > X

E@) =2ANr+1) — @ +r— D} +2)!

very nearly, not distinguishing between runs up and
down. In all cases, a sequence of N = 10000 numbers
was used. The number of runs of length 1 to 5 inclusive
and 6 or greater were counted and a Chi-square goodness
of fit test performed.

(d) Serial lag

To test the serial lag properties of the sequence (for
lagg,1 < g <6 wusually) a sample of 2000 + ¢
pseudo-random numbers was used. The interval (0, 1)
was divided up into 10 equal disjoint intervals. Let f;

. i—1 i
be the number of numbers X, in the range 0 ° F))’

and g;i(q) be the number of ordered pairs (X,, X, ,)
such that X, contributes to f; and X, ., to fj.
Let

1 10
2 A 2
Sl - 200 i§l (fl 200) s

1 10 10
and 539 = 55 -21 Zl(gu(q) — 20)%
i=1 j=

Then S% = S%(g) — S? is asymptotically X3, for a truly
random sequence (see Good, 1953) and so S? was
calculated and compared with the distribution of X3,

(e) Poker test

A run of 2000 sets of first digits of 5 consecutive
numbers in the sequences was examined and classified
according to the type of poker hand to which they
corresponded, as shown in Table 1.

Table 1
EVENT PROBABILITY
‘bust’ 0-3024
‘one pair 0-5040
‘two pairs’ 0-1080
‘three of a kind’ 0-0720
‘full house’ 0-0090
‘four or more 0-0046

of a kind’

Again, a standard Chi-square test of goodness of fit
was performed.
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(f) Powers

1
One method of estimating J f(x)dx by a Monte Carlo
0

1 n
method would be to evaluate - > f(X;) where the X;
1

are (supposedly) uniformly and independently distri-
buted on (0,1). Given a pseudo-random number
generator, it is reasonable to ask whether sequences
generated from it will satisfactorily ‘integrate’ poly-
nomials (in one variable) by this method, since, if so,
then they will also ‘integrate’ most ‘smooth’ functions
(with a Taylor expansion) satisfactorily.

For a random variable X, uniformly distributed on

©, 1),
EX’) = 1/(j + 1), and var (X7) = j%/(2j + D(j + D>
(>0

We did not persevere with this test for long since it was
not very sensitive, and our main concern was to try to
find sequences that satisfy the most sensitive tests we
could find. It was hoped that the powers test might
provide a sequence of graded tests distinct from those
given by correlation and run tests; this is, however, more
likely to be useful for, say, a sequence of random normal
deviates, where sample variance is perhaps more variable
than it is in a more or less uniform distribution over a
finite interval, as in our sequences.

4. Results

A few results were obtained with Lehmer’s Multi-
plicative Congruence (using a prime modulus; see also
Downham and Roberts, 1967). Under suitable con-
ditions on k (where the generator is X, ; = kX, modulo
P), satisfactory results can be obtained from all the tests
we used.

A few runs with the second order Fibonacci sequence
were also made, and in agreement with Taussky and
Todd (1956), the results were extremely unsatisfac-
tory. For example, the number of up or down runs
of length 1 was extremely low, while the number of up
or down runs of length 4 or greater was very high.
Attempts to obtain more satisfactory sequences were
made by using only every other, then every third, and
finally every fourth number in the sequence. In every
case, the value of X2 obtained in both run tests was highly
significant.

The uniformity, serial lag, powers, and poker tests
were not particularly sensitive, whereas the two run tests
gave very large values of X2 at the least provocation.
Incidentally, Green, Smith, and Klem (1959) also found
that the median runs test and a generalisation of it (also
testing goodness of fit of runs above and below the
point g, ¢ = 0-75, 0-25, etc.) were the most sensitive,
and on the basis of results obtained, felt it necessary to go
as far as the sixth order for a satisfactory generator.
They did not use the up and down run test at all.

After using all six tests on a few generators, it was
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found that no generator ‘passed’ the run tests and yet
failed the others, and hence, unless a generator ‘passed’
the run tests, it was considered a waste of computer
time running the others.

Run test results from the basic Perron recurrence
X;=X;_, + X;_3; modulo p were not at all good.
There were far too many up or down runs of length 3
or greater, and never any median runs of length 4. It
was relatively easy to prove that in fact a median run
of exactly length 4 is impossible, i.e.

if a<},b>%,¢c>%@+b),>4L0G+0>%
then a@a+b+0>4%
(and its dual), where (X),; denotes the fractional part of X.

Proof

0<a<itandi<bdb<l,hence} <(a+b) <13
But (a + b); > 3, and hence 4 < (a + b) < 1.

Also} <b<landi <c<l,andsol < (b + ¢) <2.
But (b +¢); >4 Henceld <b+c<2.
I<@+b<landi<c<l,sol<(@a+b+c) <2
13 <(b+c)<2and0 <a <4,50 14 <(a+b + c)<24.
Hence 13 <(@+b+c)<2,ie.(a+b+c)y>1%
q.e.d.

Taking every other number in the sequence, and also
every third, still gave very unsatisfactory run test results.
However, when sampling every fourth number, extremely
good results were obtained for quite small p (such as

2003), provided p was not of the form c2 + 23d?; see
Table 2.

Table 2
MEDIAN NUMBER
RUN LENGTH EXPECTATION OBTAINED

p=2003 p=2347 p=5237

1 2500-5 2401 2457 2661

2 1250-1 1247 1167 1295

3 625-0 631 745 667

4 3125 312 302 290

5 156-2 171 124 162

6 78-1 81 111 55

7 39-0 36 50 9

8 19-5 19 16 31

9 9-8 16 0 15

10 or more 9-8 13 0 0
Xg 11-0 73-4%  65-8*

UP-DOWN

1 4166-7 4095 4156 4043

2 1833-1 1857 1844 1868

3 5277 545 580 583

4 115-0 118 82 90

5 20-3 14 17 22

6 or more 3-5 2 0 0
X§ 4-8 19-8* 19-2%
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2347 and 5237 both fall into category A, whereas
2003, in category C, produces sequences with periods
of length 4014013, and much more satisfactory run
test results.

Generators of this type (i.e. every fourth number from
the generalisation of the Perron sequence) were then
tested with the uniformity, serial lag, powers and poker
tests, and, as expected were satisfactory provided p was
not of the form ¢2 4 23d2. When p was of this form,
all results were unsatisfactory. One possible reason is,
of course, that the cycle length is much shorter (r—1
or less). Another is that the actual integers obtained
from the recurrence are by no means uniformly dis-
tributed; see, for example, Table 3.

Table 3

p=259 (x0, x1, x2) = (16, 50, 43) gives a cycle of length 58:

16 50 43 7 34 50 41 25 32 7 57

39 5 37 4 42 22 27 5 49 32 54

22 27 17 49 44 7 34 51 41 26 33

8 0 41 8 41 49 49 31 39 21 11

1 32 12 33 44 45 18 30 4 48 34
52 23 27

The integer 49 occurs 4 times whereas twenty-three
positive integers <59 do not occur at all. When p is
not in category A of §2, this phenomenon is not as
marked, as satisfactory results for all tests can be
obtained. Thus, with the above restriction on D, it
appears at first sight that the sequence generated by
taking every fourth number from the generalised Perron
sequence is as good as the multiplicative method. About
25 different values of p, ranging from 2003 up to
67101323, were found to give satisfactory results to all
our tests. However, the limitation with any additive
method is that if the generator is used to produce
‘random’ points in k-space (in the obvious way), then
when £ is at all large, results of Monte Carlo integrations
(for instance) will quite possibly be very inaccurate
because the generator is really only producing points in
a subspace of much lower dimension (in our case, of
dimension 3). Greenberger (1965) describes another
hazard with additive generators, observed with the aid
of an oscilloscope.

Davis and Rabinowitz (see Tocher, 1963) claim to
have obtained satisfactory results from simulations of
finding the volume of k-dimensional hypercubes by
randomising between three second order additive
generators. Accordingly, to show the limitations of our
third-order method, simulations of finding the volume
of a hypercube of side 2~ 1/% (2 < k < 9) in k-dimensional
space were run, and an attempt to estimate the volume
of a 100-dimensional hypercube of side 0-99 was made

1 100
(volume = (1 — m) = 1/e). of the

volume of the first ‘quadrant’ of a hypersphere of
unit radius in k-space (2 < k < 6) were also made. In
both types of simulation, every term in the sequence

Estimates
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was used, and thus successive x; values (for example)
are generated by taking every kth member in the
sequence, but the x;, 1 < i < k determining (x,, . . ., x,)
in k-space are by no means independent, and in fact
(x4, . . -, X,) is in a 3-dimensional subspace of (0, 1).

Hypercube
(Number of points inside out of 10000)
k RUN 1 RUN 2 EXPECTATION S.D.
2 5048 5029 5000 50
3 4918 4918 5000 50
4 4942 4973 5000 50
5 4909 4964 5000 50
6 4791 4882 5000 50
7 4848 4823 5000 50
8 4818 4866 5000 50
9 4805 4868 5000 50
100 3562 3679 48

The deviation from expectation is negative and
significant for k > 5, and the effect appears to increase
with k, although it is not as large as one might expect.
The simulation with k& = 100 was repeated with the
Cambridge University Library Routine for pseudo-
random numbers (Lehmer’s Method with prime (23! — 1)
modulus). Of 10000 points, 3648 were inside the
hypercube, which is quite satisfactory.

Hypersphere (the volume of a hypersphere of unit radius

is w*12/(3k)!)
(Number of points inside out of 10000)
k EXPECTATION S.D. RUN 1 RUN 2
2 7854-0 41 7922 7792
3 5236-0 50 5254 5189
4 3084-0 46 2974 3066
5 1644-9 37 1471 1399
6 807-5 27 721 678

Again, a downward drift (relative to expectation) is
noticeable as k increases. The results are not acceptable
for k > 5, and only one is reasonable for k = 4.

Tests were also made on sequences generated by taking
every fifth, sixth, seventh, eighth and ninth numbers
from the original recurrence. All were satisfactory apart
from the run test results when taking every seventh
number; there were too few long median runs and too
many of lengths 3, 4 and 5, while the up and down run
test gave too many of length 1 and too few of length 4.
We were unable to find a satisfactory explanation of this.

5. Conclusions

It appears that satisfactory pseudo-random numbers
can be generated from the additive congruence
Xj=X;_, +X;_3; modulo p provided only every
fourth term is used and p is not of the form c¢2 + 23d2.
If pseudo-random numbers are required for four or
more independent purposes, then every term in the
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sequence can be used (if seven sequences are required, at Cambridge, n = 20 and since (Hardy and Wright,
reject every eighth term), but caution is needed when 1960) there are of the order of 20000 primes between
evaluating integrals by Monte Carlo methods, as this 750000 and 1048576 it appears almost certain that
additive method should certainly not be used in more such a p exists, which will produce sequences with period
than three dimensions. at least 500000 million. Actually finding such a p is
Even when p is not of the form c¢? 4 23d?, it is not an insurmountable problem; only the lack of a
advisable to check that the period obtained is long suitable program prevented us from finding one.
enough. For example, p = 151 gives a period of It seems reasonable to suppose that the time lost in

1093 = (p? + p + 1)/21, and p = 157 gives a period of storage and retrieval of three previously generated
4108 = (p> — 1)/6 = 26(p + 1), so it appears that numbers (as opposed to one) will on many machines be

quite possibly periods considerably shorter than p? are more than offset by the time gained through using
common. However, supposing the word length for addition and subtraction rather than multiplication and
integer addresses on a given (binary) machine is n, division.

(i.e. integers << 2" — 1 are allowed), then it is quite
likely that there exists a prime p in the range 2"~ 1/2 to 27,

satisfying all the conditions for category C of §2 and Acknowledgements
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Book Review

Lectures on Advanced Numerical Analysis, by FRITZ JOHN,1967; method of Newton. These two chapters together comprise
179 pages. (London: Thomas Nelson, 60s.) over one-third of the book. _
As the author explains in a preface, this book consists essen- The determination of eigenvalues of a matrix, polynomial
tially of the lecture notes of a course of lectures given in and trigonometric approximation, and the solution of ordinary
1956-57, with revisions to the wording and the list of refer- differential equations are next discussed very briefly, and the
ences, but no significant changes to the content to bring the rqmaxndc?r of the.book' is d.evoted.to the s‘olutlon of pa.rtlal
material up to date. This explains, in some measure, the differential equgtlons in fair det.all, especially of eguatlons
curious selection of numerical methods considered, no doubt of the parabolic and hyperbolic type. Here besides the
also directed by the personal preferences of the author, and normal difference methods, the methods of Friedrich and
the historical nature of some parts of the book. Courgnt, Isaacson and Rees for the so}utlon of hyp.erbollc
The first chapter treats the solution of linear simultaneous equations as systems of first order equations are described.
equations, principally by iterative and gradient methods, Although the book cannot be recommended as a basic
but includes also a discussion of matrix norms and estimates textbook on advanced numerical analysis today, it does
for the norm of the inverse matrix. This is followed by a contain much mtgrestmg material and would form interesting
chapter on the roots of polynomials largely devoted to background reading to a course.
theorems on bounds for these roots, but describing also the
direct methods of Bernoulli and Graeffe, and the iterative D. C. GILLEs (Glasgow)
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