Correspondence

To the Editor
The Computer Journal

An argument against paging hardware

Sir,

On reviewing Dr. Laski’s excellent paper on segmentation
and virtual address topology (this Journal Vol. 11 pp. 35-40)
I am struck by the similarity of his approach to that outlined
by Peter Wegner in his recent book (1). Both make the
essential distinction between paging and segmentation which
has confused us all for so long now. Both outline perfectly
acceptable addressing schemes for segmented virtual proces-
sors. Undoubtedly the concept of a segmented virtual
processor has to be completely understood before a workable
machine will exist on which to implement an effective multi-
access system. The influence of the English computer
faction at Cornell must be impressive.

My quarrel with both authors, however, is that they assume
that some form of paging scheme is necessary to map the
virtual address into the physical addresses of the real proces-
sor. I am becoming more and more convinced that paging
hardware is purely a temporary aberration of machine
designers to overcome the shortcomings of the present
technology. Peter Wegner admits that paging schemes have
so far been unworkable, not because of the overhead incurred
in the extra indirect addressing cycle(s) but because most real
processors unfortunately do not restrict their references to
the physical addresses of the few pages conveniently placed
in main memory by the supervisor. Real processes tend to
ramble all over their currently active segments.

So why not admit this fact and build hardware which will
allow all the complete segments of any one process to live in
main memory at the time they are active? Multiprogram-
ming can then be achieved by time-slicing complete processes
into main memory from auxiliary memory. That is, only
one process is in main memory at one time and if it tries to
activate a non-resident segment during its time-slice or alter
the length of any active segment it is immediately transferred
to auxiliary memory and another process started. During
its next time-slice it is read into main memory together with
the new segments it previously tried to activate. Segments
can be allowed to expand and contract in auxiliary memory
where there is a non-critical memory management problem
but the problem for the main memory disappears. This
scheme of multiprogramming has been called mono-
programming as only one process is resident in the main
memory at any one time.

The hardware necessary to do this clearly requires a
sufficiently large main memory so that all the active segments
of any single process can exist there during the time-slice
given to that process by the supervisor. It also requires an
auxiliary memory sufficiently large to contain all the active
and dormant segments for all the active process and suffi-
ciently fast that the access time to a process is negligibly small
with a transfer rate sufficient to saturate main memory. The
basics of the hardware necessary to do this exist in the Control
Data 6600 with Extended Core Storage (2). If John Laski
were to suggest that the addressing techniques of that
machine were inadequate for the scheme of segmented
virtual space he proposed I would entirely agree with him.
However the basic technology nevertheless exists. Surely
this points more accurately to the next generation of com-

351

puters than some elaborate paging scheme with descriptors
containing page-use bits which attempt to predict which
page will next be referenced by some unmanageable process
with a user on the end of a telephone line? Perhaps the
Burroughs B8500 will have all the facilities we require ?

Yours faithfully,
DaAvip P. OWEN

References

(1) WEGNER, P. (1968). Programming Languages, Information
Structures and Machine Organisation. McGraw-Hill.

(2) Control Data Corporation—6400/6500/6600 Computer
Systems Reference Manual Pub. No. 60100000.

Stanford Research Institute
Menlo Park

California 94025.

4 June 1968

Dr. Laski replies:

It is not paging, but, run-time indirection to translate
virtual address to physical address that is in fact what Mr.
Owen objects to. The only possible alternative is load-time
translation.

Under Mr. Owen’s scheme this will have to occur not just
at initial load but, via the indirection of a segment table, at
each scatter load for each reference pointer occurring in
non-private objects and for each reference in both private
and non-private objects whenever he expands his physical
space. Contracting physical space is also necessary and rather
difficult to provide within his proposed organisation. Finally,
of course, such a scheme is impossible if there is more than
one processor : firstly since intersegment references have to be:
concurrently construed distinctly for distinct processes;
secondly, and more importantly, since ‘common’ read-write
segments must not be duplicated and thus cannot be made
available to the processors of more than two (concurrent)
processes.

For these reasons, Mr. Owen’s scheme (with needed
extensions) would, in my opinion, be much more expensive
to implement than the kind of scheme I outlined in my paper
for environments in which processers make substantive use
of common data-objects that cross-reference one-another—the
mark of an information utility—or vary dynamically in size—
the mark of non-number-crunching; and conversely if
processes require a fixed amount of private space only, Mr.
Owen’s scheme is vastly cheaper—as witness the cost-
performance of the 6600 for its designed purpose if it has.
ECS.

Generality is always costly and, post MULTICS, we can
see much more clearly what generality we need for concurrent
processes to co-operate through a common dynamic data
base. With present hardware prices this may be too
expensive as yet. But if we want communal information
utilities we will have to pay their price. Until hardware is
cheap enough—which in my opinion will be 5 years—we
must wait and experiment to gain experience and insight so
that when we can afford our dreams they will have solidified
into designs that will stand the light of day.

¥20Z YoJe\ g1 uo 1senb Aq 6691 /1L GE/E/L L/eIoIe/|ulwoo/woo dno-ojwepeoe//:sdiy woij pepeojumod





