
104

Discussion and Correspondence
A note on program debugging in an on-line environment

By D. W. Barron*
It is commonly asserted that one of the main benefits of an
on-line system is that it simplifies the task of getting a pro-
gram to work: indeed, this has become part of the gospel of
multi-access. This note examines this assertion, and sug-
gests that it is true, though not for the reasons usually given.

The obvious advantages of a multi-access system are two-
fold: a filing system that allows programs to be stored and
readily altered, and almost instant access to the machine for
test runs. Anyone who has used such a system for program
development will testify that these are great benefits; how-
ever, comparable benefits can be obtained at less cost.
Programs on punched cards can be modified fairly easily,
and a full-scale filing system can be maintained quite separately
from a remote console system. The same goes for access to
the machine: given a ten-minute turnround on test runs
most programmers would be happy, and it is certain that
many of the people in universities who ask for multi-access
really want rapid turnround. Though most conventional
systems provide a turnround measured in hours or even days,
this should not obscure the fact that rapid turnround can be
achieved without a full-scale remote console system/1 >2>3'4)

However, supposing that we have a multi-access system
available, with a filing system and instant turnround, what
do we pay (in programmer convenience, not machine effi-
ciency) for these benefits ? The most significant trade-off is
that since we are communicating with the machine through
a narrow bandwidth channel, we are restricted in what we
get from the machine to what can be printed in a reasonable
time at ten characters per second. No listings, no core
dumps: with a compiler that was written for off-line use, this
makes life difficult. The minimal facility necessary is the
ability to record a core-dump in a file, for later examination.
If on-line debugging is to be effective one needs an elaborate
interrogation program which can access the core dump and

* Department of Mathematics, The University, Southampton

References
1. LYNCH, W. C. (1966). Description of a High Capacity, Fast Turnaround University Computing Center, Comm. ACM,

Vol. 9, p. 117.
2. IRONS, E. T. (1965). A Rapid Turnaround Multi-Programming System, Comm. ACM, Vol. 8, p. 152.
3. SHANTZ, P. W. et al. (1967). WATFOR—The University of Waterloo FORTRAN IV Compiler, Comm. ACM, Vol. 10, p. 41
4. ROSEN, S. et al. (1965). PUFFT—The Purdue University Fast FORTRAN Translator, Comm. ACM, Vol. 8, p. 661.
5. BOILEN, S. et al. (1963). A Time-Sharing Debugging System for a Small Computer, Proc. SJCC, p. 51.
6. CRISMA, P. A. (editor) (1965). Sections on FAPBUG and MADBUG in The Compatible Time-Sharing System: A Programmers'

Guide, 2nd edition, The M.I.T. Press.

the symbol table produced at load-time, so that the pro-
grammer can ask for information identified by symbolic
name, and receive replies in source-language form.

It might seem from the foregoing that a console is not a
very effective debugging aid. However, a full-scale multi-
access system has one trump card: the ability to interact with
a program whilst it is running. Any programmer knows that
finding a program bug from a core-dump taken after the
event is at best an unsatisfactory procedure. If the bug is
at all subtle its effects will be far from obvious, and it may
require a substantial intellectual effort to work backwards
to what actually went wrong. (Consider, for example, the
case of a program that goes wrong then immediately over-
writes the offending section with an overlay.) Dynamic
monitoring of a program as it runs is a much better way of
proceeding, and since single-shotting is not practicable on a
large machine this has led to the development of tracing
systems. Most of these, however, suffer from the defect of
producing too much output, since the user cannot be very
selective in what he asks for. With a conversational system
it is possible to be highly selective. The debugging system can
allow the programmer to intercept his program at a particular
point, or when a particular set of conditions is satisfied,
control then reverting to the console. The programmer can
then type in questions to find the values of variables or the
content of store registers, he can change the contents of store
registers if he wishes, and he can then resume the program,
either where it was interrupted, or at some other place.

It is not the purpose of this note to describe such systems
in detail (descriptions can be found in the literature,(5>6)) but
to make the point that having remote consoles and a multi-
access system is not going to remove debugging problems,
unless the consoles are backed up by a lot of sophisticated
software.

Correspondence
To the Editor
The Computer Journal

What is an analyst?
Sir,
Recently a quantity of perfectly good paper, on which pro-
grams might otherwise have been written or circuits drawn,
has been expended in the attempt to define hierarchies in
computer skills. Some dregs of classical education may
perhaps help resolve one point in this difficult and important
exercise. According to its Greek roots, 'analyst' should be
the opposite of 'catalyst.' Taking the dictionary definition
of catalyst and applying a single negation, one accordingly
finds the following:

'An analyst is one who while taking no essential part in a
process nevertheless impedes its progress.'

For those who through no fault of their own are called
systems analysts, I should add that I do not really mean it.
Nevertheless, it is true that 'programmer' remains the most
honorific term in my vocabulary of this subject.

Yours faithfully,

PETER FELLGETT

Department of Applied Physical Sciences,
Whiteknights, Reading.
28 October 1968

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/104/311548 by guest on 19 April 2024


