
Lsix 23

Appendix A note on BCL and the analysis of Lsix instructions
BCL is a general purpose programming language with

special emphasis on data structures. Consider the
sequence
FIELD IS (OSP., (EITHER 'T.', TIMEF1ELD

OR BUG, (EITHER FLDNAMES OR NIL.)
OR INTEGER ,'.', IF INTEGER LE 128, READFIELD)
,OSP., OCT : = 0 , PLANT)

which occurs in the main text of this report. The first
two words indicate that this is a definition of the 'name'
FIELD. That the rest of it is a parenthesised structure
with commas indicates that FIELD denotes a structure of
the type known as a 'group'. The commas between the
'objects' denote juxtaposition, and for alternatives the
notation EITHER. . . . OR. . . . is used. The objects within
a group may be literals or names. Character literals
are enclosed with primes, numeric literals are obvious,
also literal commands such as x : = z, and literal groups
(in parentheses). Names, which must of course be
defined somewhere, but can be defined passim, may be
names of variables, routines or groups. Group defini-
tions may be recursive, i.e. the name of a group may
appear in its own list of objects.

Suppose we encounter the object 'FIELD' when in the
course of reading in, and the next characters in the input
stream are TA4, a remote field. These characters are
matched with objects in the group FIELD. The
first object, OSP., is a built in group which recognises
and skips over any number (including zero) of spaces.
Next we have the first of three alternatives. The next
two characters in the input stream are compared with
the literal 'T. ' . T is matched but period is not so this
match fails and the second alternative is tried. The
group BUG recognises T as the name of a bug or base-
References

field and plants its address in the object area. The
second object in this branch is itself a pair of alternatives,
(EITHER FLDNAMES OR NIL.), which matches any number
of field names and computes and plants the addresses of
the corresponding field definitions. In this example,
field names A and 4 are recognised and the corresponding
addresses planted. Finally, after the successful matching
of the second alternative, OSP. reads over any spaces,
the variable OCT is assigned the value zero and the group
PLANT plants the value of OCT in the object area. Thus
as a side effect of the recognition of the remote field TA4
the following sequence of pointers is planted in the object
area.

1 1 1 o

BugT
I

Definition
of field A

i
Definition
of field 4

zero
terminator

A second example is the special read-only field 64.
(an integral power of two terminated by a period). As
the first character is a digit, attempts to match 'T. ' and
BUG fail and the third alternative is tried. The object
INTEGER is an integer variable to which the integer 64
is assigned. Then the period is matched and if the con-
dition INTEGER LE 128 is satisfied the routine READFIELD
tests that the input integer is an integral power of two
and computes and plants the address of the field '64.'.

When BCL is used as a compiler compiler, commands
written as objects in a group may generate and plant
object coding as soon as source language instructions
are matched. Alternatively the user may, if he so
wishes, construct analysis records.

HENDRY, D. F. (1966). A Provisional Manual for the BCL Language, University of London Institute of Computer Science
(Internal report).

KNOWLTON, K. C. (1965). A Fast Storage Allocator, Communications Assoc. Comp. Mach., Vol. 8, pp. 623-625.
KNOWLTON, K. C. (1966). A Programmer's Description of L6, Communications Assoc. Comp. Mach., Vol. 9, pp. 616-625.

Book Review

Indices and Primitive Roots, by A. E. Western and J. C. P.
Miller 1968; 385 pages. (London: C.U.P., £6 0s. Od.)

This work incorporates and supersedes Haupt-Exponents,
Residue-Indices, Primitive Roots, and Standard Congruences,
published in 1922 by the late Lt-Col. Cunningham in colla-
boration with H. J. Woodall and T. G. Creak. It may also
be regarded as a continuation of Jacobi's Canon Arithmeticus.

The editors denote by g, g', h respectively the least
positive, the least negative, the least prime primitive root
modulo P, P being an odd prime. It would be convenient
to define also G = gifg< g',G = —g'\(g'>g. With this,
the index of a (prime to P) given in the main tables is the
least n > 0 such that a = G" (mod P). The tables give (i)
the complete factorisation of P — 1; (ii) g, g' and h; (iii) the
indices of certain a; and (iv) the residue-indices v = g.c.d.
(ind a, P - I).

Table 1 covers all P up to 50021, Table 2 the P between
50000 and 105 and = I (mod 24). Table 3 goes up to 250000,

with the stronger restriction P= 1 or 49 (mod 120); and in
Table 4 / > = l (mod 120) and P < 106. This large range of
P is made possible by restricting the range of a; in Table 1,
a ranges over primes up to 37 and 6, 10, 12. With this
information it is not too difficult to calculate the indices of
other a, as explained in the introduction.

The original calculations were all done by hand or with a
desk machine, and the method is explained in detail, with
some subsidiary tables, so as to enable the reader to investigate
primes P not given in the main tables. All the entries have,
however, been checked at least twice, on the ACE computer
at the National Physical Laboratory. As a result, the sur-
viving editor (Dr. Miller) hopes that very few errors remain;
the reviewer is unable to say whether he is right.

The tables should be very useful to workers in the field.
They provide evidence for many plausible conjectures,
e.g. that g =g(P) defined above is of very low order of
magnitude for large P.

G. L. WATSON (London)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/23/311561 by guest on 13 M
arch 2024

