38

Methods of computing event times in project networks

By D. Nudds*

Digital computer methods for PERT event time calculations may be based on the familiar
methods used for hand computations, in which case the network must be topologically ordered.
For the calculation of the earliest and latest event times it is sufficient to order the arcs in one of
several ways. An ordering may be achieved by using the topological structure in a way analogous
to the hand computation method. Alternatively, iterative methods may be used; these compare
favourably provided the network data is presented in a suitable form.

(First received May 1968 and in revised form July 1968)

The basic techniques of project scheduling by using
networks are well known under the names of PERT,
Critical Path Analysis, etc.—see, for example, Robinson
(1963), Kelly (1961), Lockyer (1967). The computation
of event times is a constituent part of all project schedul-
ing programs and of their developments into more
general techniques for resource allocation (RAMPS),
cost-time networks (PERT/COST), etc. Most accounts
of the methods of computing event-times are descriptions
of the simple hand-computational method. Kahn (1962)
describes one method for sorting the activities in a net-
work and Parikh and Jewell (1965) describe a method
for decomposing larger networks into several sub-net-
works. Klein (1967) describes an implementation of
Kahn’s method within a RAMPS program.

In this paper we describe and compare the basic com-
putational techniques. The problem, in graph-theoretic
terms may be expressed as follows, using the terminology
as defined by Busacher and Saaty (1965). A project is
represented by a network consisting of vertices, repre-
senting events, connected by arcs, representing activities.

We are given a ‘network” which we define as a single
component, simple, directed graph with no cycles. A
vertex which has no arcs incident to it we call an origin.
A vertex with no arcs incident from it, we call a terminus.
There must obviously be at least one origin and at least
one terminus. Each arc has a non-negative length, and
the sum of the arc lengths along a path is the path-length.
Considering all the paths between any origin and any
terminus, a path with maximum length is a critical path.
Projects with m origins and n termini thus have at least
m X n critical paths.

Formulation of the problem

Although some applications use networks with
several origins and several termini, we have restricted
our analysis to the situation with one origin and one or
more termini. Many applications either fall directly
into this category or may be made to do so by extending
the network by the inclusion of a new origin and several
extra arcs, each leading from the new origin to one of the
old origins. Failing this, cases in which more than one
origin are present, if they should arise, may be dealt
with by an extension of the single-origin method. We
can define the function E(») of any vertex » as the
maximum of all the path-lengths from the origin to v:
this corresponds to the earliest event time in scheduling

* Computing Laboratory, University of Bradford, Bradford, Yorks.

terminology. Similarly, corresponding to latest event
time, we define F(v) for any vertex » as the minimum of
the difference between E(¢) and the path-length from »
to ¢, for all paths, if any, from v to ¢, and for all termini .

We use the notation:

V' denotes the set of all vertices of the network;

T denotes the set of all termini;

¢ denotes the origin;

A denotes the set of arcs;

Ma) denotes the length of an arc a;

A(p) denotes the length of a path p;

#n(v) denotes those arcs incident to vertex v;

&x (v) denotes those arcs incident from vertex v;

I(a@) denotes the starting vertex of arc a;

J(a) denotes the terminal vertex of arc a;

P(v, w) denotes the set of all paths between vertices
v and w.

Hence we have, as previously defined

E(v) = Max {\(p)} where E(¢) =0
peP(¢,v)
and
F) = Min {E(r) — X(p)} ()
peP(v, 1)
tET. J
The basis of all computations is
E() = Max {E(I(a)) + Aa)} *
ae Fn(v)
and Fw) = Min {F(J(a)) — Ma)} \(2)
ae &x(v)
with E(¢) = 0 and E(¢) = F(¢) for all teT.)

A hand-calculation method using a diagrammatic rep-
resentation of the network, is based on these equations.
It is simple and straightforward because, starting with
E(¢) = 0, it is easy at any stage to select a vertex such
that E(J(a)) is known for all ae #n(v); for the calculation
of the F values, starting from termini it is again at any
stage easy to select a vertex for which F(J(a)) is known
for all ae Ex(v¥). For networks of up to a hundred or
so activities, this is not onerous—the visual scanning
involved is easy and fast provided the diagram has been

¥202 Iudy 61 U0 1sonb Aq 86G L LE/8E/L/Z L/aIoIe/|ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

Computing event times 39

properly drawn: the only real labour is in performing
the many very simple arithmetic operations.

Automatic computation: the representation of networks

Examining now the implementation of critical path
scheduling on a digital computer, we see immediately
that there are several alternative ways in which the net-
work information may be stored. In any case, each
vertex v; may be identified by the integer index i, and
each arc a; by its index j: we assume that on the whole
the values of the indices range from 1 upwards, with few
gaps. As far as the vertices are concerned, this can
simply be a labelling requirement imposed on the data,
or the result of an initial transformation.

In the following we now write /,, J,, E,, F, and A, for
Ka,), J(a,), E(,), F(v,) and Ma,) respectively. Three
representations are here suggested:

R1: An arc array. In effect 3 vectors I, J, A with com-
ponents I, J,, and A,.

R2: Incidence matrix, or A-array. Here is stored a
square array of elements d;; = A(a) if there is an
arc a = (v;,v;). and otherwise a special symbol,
(e.g. —1), indicating absence of an arc. In any
real network there is, of course, a preponderance of
null entries, and a large network, apart from being
exceedingly sparse, would require an inordinate
amount of storag: space, certainly too much for
most immediate access stores.

R3: A more complex structure in which the null entries
are removed from R2: any one of the usual ways of
representing a sparse array may bz employed, e.g.
R3(a): For the method we shall describe later it is

suitable to group together the non-null
entries according to their rows.

R3(b): For other methods a grouping according to
columns may be better. Klein (1967)
implements each of these groups in the form
of a list structure. Further groupings may
be useful in other methods; in effect R3(a)
gives access to the immediate successors of
any vertex, and R3(b) to the predecessors.

Now consider the method implied by equations (2)
above. At any stage in the calculation of the components
of E, several components are known, corresponding to
vertices in the set V,, say, with ¥V, ¢ V.

Then for a further value to be found it is necessary
to find a vertex v, such that {I(a); ae In (v,)} C Vi
and then V4, = {vey 1} U Vs Le. the set is extended by
the further inclusion of a vertex the immediate pre-
decessors of which are already in the set. Obviously in
this case representations Rl and R2 can involve many
scans of the whole of the stored information. Repre-
sentation R3(b), however, by giving ready access to the
members of the set {/(a); ae #n (v,)}, foreach v,,leads to a
more efficient algorithm. Several searches through the
various lists may still be necessary and we shall later
describe yet more efficient methods : these methods involve
ordering the given information in some suitable way.
However, an alternative approach will now be described.

Iterative methods

In this method the most suitable form of storage of
the data is R1, an arc array, the rth entries corresponding

to arc a, being I,, J, and A,. To calculate the values E,
the algorithm starts by initially setting e, = 0, for all r.

Then for each arc in turn, if e, <e; -+ A, set
e;, = e;, + A,. Repeat the process until no further
changes in any values are recorded. The iteration
obviously converges since, at any stage, the value of ¢;
represents, if, non zero, the length of a path terminating
atv,. Provided there are no cycles in the graph then the
values of e; tend to a limit which is the length of the
longest path terminating at v;, i.e., to E;.

The calculation of the values of F; proceeds similarly.
First set f, = E, for all terminals v, then for each arc a,
in turn set f;, to the value f;, — A, if this is smaller, again
iterating until convergence results.

The speed of convergence of the calculation is obviously
highly dependent on the way in which the arc data is
ordered. The closer the data is to an optimum topo-
logical ordering, which we define later, the smaller is
the number of iterations that aic required.

If the information is presented in a more or less
random order it might be conjectured that since there
is then no particular preferential direction in which to
scan the arc data, it may be preferable to perform the
iteration with a sequence of scans in alternating direc-
tions. Trials of this method, as described later, have
shown the conjecture to be false.

On the other hand, realistic data is not normally
randomly ordered. Without any difficulty, and probably
as a matter of course, a project analyst will present his
data in such a way that if there is a path in which arc g;
occurs earlier than arc a; then it is more likely that i </j.
Even when this is only a mild tendency, it is sufficient
to guarantee that an iteration consisting of arc-scans
in the same direction is the faster.

Ordering of arcs

Further consideration of the convergence of the
iterative method shows that in fact one scan of the arcs
is sufficient to determine all E;, and a further scan in
the opposite direction determines all F;, provided the
arcs are suitably ordered in the first place. In this case
the method is more or less the same as the non-iterative
method first described: in each case we require a topo-
logical ordering of the network, in which for two arcs
a; and g;, if i > j then there cannot exist any path from
J(a;) to /(a;).

An equivalent condition to this is that for any vertex
v, all members of the set Fn(v) must appear earlier, in
the ordered set 4 of arcs, than members of &x(v). The
converse condition holds, of course, for the calculation
of the values of F: i.e. in the second set of arcs, for any
v, all members of &x(v) must appear before any member
of #n(v). Thus the reverse order to that for the cal-
culation of E suffices.

In the simplest programs written for critical path
analysis this order is achieved by restricting the labelling
of vertices to integer indices such that if (v;,v;) is an
arc then i < j. It is then sufficient to sort the arcs in
order of ascending terminal vertex index. This is
directly equivalent to the scanning of the equivalent
A-array by columns from left to right, the array itself
being uppzr triangular—null on and below the main
diagonal. A similar row scan would suffice for the
determination of the values of F. But these orderings

¥202 Iudy 61 U0 1sonb Aq 86G L LE/8E/L/Z L/aIoIe/|ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

40

are not necessary: the row-ordering reversed is an
example of a possible ordering for the calculation of F.

If the restriction is not imposed upon the project
analyst that indices should be allocated to vertices in
the way described—which is certainly a non-trivial and
usually non-acceptable restriction in large networks in
practice—then a topological ordering must be achieved
by computer.

Arc ordering by Kahn’s method

In each stage of the calculation of the values of
E, a search is made for a next vertex such that the
calculation of E has already been performed for all
predecessors of this vertex. Elimination of the scanning
of all arcs is achieved by storing the network as a com-
pressed array-row of the form R3(a). For each vertex
a count is initially made of the number of predecessors
of the vertex. When a vertex is processed these counts,
for all its successors, are diminished by 1. Once the
count of any vertex becomes zero it is added to a list
which contains the vertices which may be processed
next. For the calculation of values of F, Kahn described
a reversal of this procedure. However, as we have seen
this is not necessary; it is sufficient, and simpler, to run
through the arcs in the order which is the reverse of the
one previously derived.

Ordering by stage distance

In this method a transformation is effected of the
vertex indices so that they are topologically ordered.
This requires defining an integer function f over the set
of vertices V such that if », weV and there is a path
from v to w then f{v) < f{w). Once this has been deter-
mined, arranging arcs in order of ascending f{I(a)) is a
satisfactory arc order. An alternative key for the sort
would, of course, be f{J(a)).

The simplest function which has the property is the
stage distance of a vertex v from the origin, i.e. the
maximum number of vertices on any path from the
origin to ». This is, of course, identical with the defini-
tion of E(v) for the case in which all arc lengths are unity
and so the stage distance must be found by one of the
previously discussed methods: it would be pointless to
use Kahn’s arc ordering method as an intermediate
stage in producing an arc order; on the other hand the
iterative method is immediately attractive as a single
iteration can be used to produce a vertex order, by stage
distance, and hence an arc order, which can be used for
both calculation of E and of F.

This itself is sufficient, for a large network, to justify
the extra time involved in arranging this ordering, in
any single calculation. There are other possible
benefits: if the arc ordering is itself output for future
reinput, then in any future processing of the network
with alterations to the arc lengths, the arc order may be

References

Nudds

used again and the processing time becomes further
reduced.

Calculaticns and conclusions
A series of programs have been written for the Uni-
versity of Bradford’s 1.C.T. 1909 Computer. Com-
parative times for various sets of data are shown in
Table 1. This shows results for four sets of data.
Table 1

Times in seconds for an arc ordering of 207 arcs

METHOD DATA

@ ® © @

Kahn’s Method 0-40 0-40 0-40 0-40
Iterations all in same
direction 0-34 0-34 0-42 0-70

Iterations in alter-
nating directions 0-39 0-41 0-53 1-13

(@) Data containing 207 activities as it was originally
set up before the project was started. There was
no deliberate attempt to order the data, but in
fact the list tended in general to run along paths
in the network.

(b) Data concerning the project some time after it
had been started. A number of amendments had
been made, distorting somewhat the original order.

(¢) A completely random permutation of the data
in (a).

(d) A deliberate series of changes were made to the
data (a). In effect the list was cut into eight
pieces, which were then joined together again in
a new order. There was still, of course, a tendency
for parts of the original paths in (@) to be preserved.

Methods used to sort the arcs were:

(1) Kahn’s method of arc ordering.

(2) Iterations, all in the same direction to produce
stage distances, and then arc orders.

(3) Iterations in alternating directions to produce
stage distances and then arc orders.

It is interesting to note that the deliberate but sectional
disordering in data (d) gives rise to longer computing
times than the completely random order of data (c).
For the first two sets (a) and (b), which correspond to
realistic computational situations, the simple iterative
approach is significantly faster. The actual computing
time saved for networks of this size is negligible, com-
pared with overall processing time including input and
output and editing. But for larger networks the iterative
method is not only faster but more economical in the
use of immediate access storage space.

BusacHER and SAATY (1965). Finite Graphs with Applications, McGraw-Hill.

KanN, A. B. (1962). Topological sorting of Large Networks, Comnt. ACM., Vol. 5, pp. 558-562.

KEeLLY, J. E. (1961). Critical Path Planning and Scheduling: mathematical basis, Operations Res., Vol. 9, pp. 296-320.
KLEIN, M. M. (1967). Scheduling Project Networks, Comm. ACM., Vol. 10, pp. 225-231.

LockyEr, K. G. (1967). An Introduction to Critical Path Analysis, Pitman.

ParikH, S. C.,, and JeweLL, W. 8. (1965). Decomposition of Project Networks. Management Sci., Vol. 11, pp. 444-459.
RosinsoN, F. D. (1963). The background of the PERT algorithm, Computer Journal, Vol. 5, pp. 297-300.

¥202 Iudy 61 U0 1sonb Aq 86G L LE/8E/L/Z L/aIoIe/|ulwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

