
48 Burstall

Acknowledgements
I am grateful to P. J. Landin and C. Strachey for

many illuminating discussions about the theory of pro-
gramming, and to Professor J. A. Robinson for helping
me to clarify the ideas presented here. The ideas are

based on the work of Professor J. McCarthy. I would
also like to thank IBM Corporation for making it
possible for me to attend the conference on the Mathe-
matical Theory of Computation and give the talk from
which this paper is derived.

References

BARRON, D. W., and STRACHEY, C. (1966). Programming, Advances in Programming and Non-numerical Computation (ed. L. Fox)
pp. 49-82.

BROOKER, R. A., and ROHL, J. S. (1967). Simply partitioned data structures: the compiler-compiler re-examined, Machine
Intelligence 1 (eds. N. L. Collins and D. Michie). Edinburgh: Oliver and Boyd, pp. 229-239.

BURSTALL, R. M. (1968). Semantics of assignment, Machine Intelligence 2 (eds. E. Dale and D. Michie). Edinburgh: Oliver and
Boyd, pp. 3-20.

COOPER, D. C. (1966). The equivalence of certain computations, Computer Journal, Vol. 9, pp. 45-52.
COHN, P. M. (1965). Universal algebra, New York and London: Harper and Row.
CURRY, H. B., and FEYS, R. (1958). Combinatory logic, Amsterdam: North Holland.
FLOYD, R. W. (1967). Assigning meanings to program, Mathematical Aspects of Computer Science. Amer. Math. Soc. Provi-

dence, Rhode Island, pp. 19-32.
KAPLAN, D. M. (1967). Correctness of a compiler for Algol-like programs, Stanford Artificial Intelligence Memo. No. 48,

Department of Computer Science, Stanford University.
LANDIN, P. J. (1964). The mechanical evaluation of expressions, Computer Journal, Vol. 6, pp. 308-320.
LANDIN, P. J. (1966). The next 700 programming languages, Comm. Ass. Comp. Mach., Vol. 9, pp. 157-166.
MCCARTHY, J. (1963). A basis for a mathematical theory of computation, Computer Programming and Formal Systems (eds.

Braffort and Hirschberg), Amsterdam: North Holland, pp. 33-70.
MCCARTHY, J., and PAINTER, J. A. (1967). Correctness of a compiler for arithmetic expressions, Mathematical Aspects of

Computer Science. Amer. Math. Soc. Providence, Rhode Island, pp. 33-41.
PAINTER, J. A. (1967). Semantic correctness of a compiler for an Algol-like language, Stanford Artificial Intelligence Memo. No. 44

(March 1967), Department of Computer Science, Stanford University.
RICHARDS, M. (1967), Basic CPL reference manual, Memo. M-352, Project MAC, M.I.T.

Note added in proof. Some further work on the topic of this paper is reported in:
LANDIN, P. J., and BURSTALL, R. M. (1969). Programs and their proofs: an algebraic approach. To appear in Machine Intel-

ligence 4 (eds. B. Meltzer and D. Michie). Edinburgh: University Press.

A program for solving word sum puzzles

By R. M. Burstall*
This paper describes a program for solving a class of 'word sum' or 'cryptarithm' puzzles by a
heuristic tree searching method. Formally the problem is to solve a set of simultaneous linear
inequalities with the variables taking integer values.
(First received October 1967 and in revised form May 1968)

1. Introduction

This paper describes a heuristic program for solving a
class of 'word sum' problems sometimes called
'cryptarithms' (Brookes, 1964), which have attracted
some attention as a simple example of problems which
can be solved by brute enumeration but which can better
be tackled with heuristic search reducing strategies. An
example (with acknowledgements to English Electric) is

K D F 9
K D N 2
K D F 6

K D P 1 0

CAREER

Each letter is to be replaced by a different digit to
form a correct addition sum.

Enumeration means scanning 10! possibilities. Can
the computer adopt a more humane method?

2. Mathematical formulation
We can express the problem thus (adding variables for

carries)

9 + 2 + 6 = R+\0v
v + 2F + N + 1 = E + 10w
w + 3D +P = E + lOy
y + 3K + D = R + lOz
z + K = A + 10C

* Department of Machine Intelligence and Perception, University of Edinburgh

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/48/311611 by guest on 13 M
arch 2024



Word sum puzzles 49

These equations can be solved by integer linear
programming (Gomory, 1963; Beale, 1965), taking any
arbitrary expression as the one to be maximised. This
is rather a sledgehammer approach and coping with the
side condition that variables other than carries must take
distinct values involves an extension to quadratic pro-
gramming or the addition of many extra equations and
variables.

3. The search method
The method used here is a tree searching method,

alternately making deductions based on the known
bounds of the variables and hypotheses about possible
values of the variables.

For example, we see immediately that R = 7. The
carries must be less than 4, hence C < 1. (C # 0 by
convention.) Continuing thus we obtain z < 3, K > 8,
z > 2 and A = 0 or 2. Now we are unable to draw
further deductions and must make alternative hypotheses
e.g. A = 0 or A = 1. For each case we may continue
a separate series of deductions until they dry up and we
are forced to resort to further hypotheses and examine
sub-cases. At each stage the set of alternative hypotheses
must of course cover all the possibilities.

Thus we alternate between a deductive phase, taking
a set of bounds for the variables and 'narrowing' them
to closer bounds, and a hypothesis-making phase causing
us to branch out and develop recursively a tree of sub-
problems to be solved.

The method of making hypotheses used was to choose
a variable and split its current range in two. E.g. if
0 < D < 7, we could take 0 < D < 3 and 4 < D < 7
as alternatives.

4. The deductive phase
Attempts to narrow the bounds by deduction can

result in:

(i) A contradiction, showing that our last hypothesis
was untenable. In this case we turn to its alterna-
tives.

(ii) Each variable being restricted to a single value.
This gives a solution.

(iii) Inability to make further deductions. Here we are
forced to make alternative sub-hypotheses.

The kind of deductions used were simple ones using
inequalities. For example we treat the equation

as

and

3x -4y + 2z= 11

3x — 4y + 2z< 11

3x -4y + 2z> 11.

(1)

(2)

(3)

Suppose we know that 0 < x < 2, 0 < j < 6 and
1 < z < 5. Using the upper bounds of x and z with (3)
we have 4y < 5, i.e. y < 1. In general for a >
inequality we add together the upper bound of each
variable (or lower bound if it has a negative coefficient)
multiplied by its coefficient and subtract the right-hand
side from the sum. This gives us the amount of 'slack'
in the inequality. If any variable has a range which
when multiplied by the modulus of its coefficient is
greater than this slack its range can be reduced. A
similar operation is carried out for < inequalities.

To aid efficiency each inequality is considered in turn
and when a deduction takes place only those inequalities
which might be affected by the change are put back on
the list for consideration.

After each deduction a check is made to see whether
the rule that no two letters have the same values can
be used.

5. Choosing a variable to split
It may make quite a lot of difference which variable

we choose to split in the hypothesis phase. How can
we make a sensible choice?

The first method tried, the 'random method', was to
try the effect of splitting not just one variable, i.e. one
way of dividing up all the possibilities into separate
cases, but tentatively splitting several variables one at a
time, to see which split is the most profitable in yielding
further deductions. For each variable we make all the
possible deductions but do not make further sub-
hypotheses. Instead we choose the variable which gave
most new information on splitting and continue our
search by splitting that.

Thus we are not just exploring one tree of alternative
hypotheses, but trying out different methods of growing
the tree. This is more sophisticated than most tree
search programs.

How do we compare the effects of tentatively splitting
different variables? An obvious measure was the
space-size, i.e. the product of the ranges of the variables,
measured on a logarithmic scale. This product is in
fact the number of possible solutions remaining. For
each variable we add the space-sizes in the two half
ranges after narrowing them to get a 'badness'. We
choose the least bad variable.

Fig. 1 shows the tree developed in a typical computer
run. The vertical lines with branches off them indicate
tentative splitting of several variables chosen at random
(up to 3 in this case). E, K and another variable were
first chosen, but the upper range of K produced a
contradiction, so that it was not necessary to try splitting
the third variable; a fresh lot of variables could be
chosen using only the lower range of K. The next
variables chosen for tentative splitting were F, P and N;
P was the best of these. From then on we have two sub-
problems on our hands to be done one after the other.
No further splitting into sub-problems took place after
this, because on each tentative splitting one of the
variables produced a solution or a contradiction in one
of its two branches.

Another slightly more refined method of choosing
variables was used, the 'merit method'. In this method
some information accumulated during the narrowing
phase was used to calculate, for each variable which
could be split, and for each of the two branches, the
number of variables which could immediately have their
bounds reduced in consequence. Adding the number
affected for each of the two branches gave a figure of
merit for the variable under consideration. This calcula-
tion was quite quick, and it allowed an approximate
evaluation to be made for each variable instead of a
more extensive evaluation for only a few of the varia-
bles selected at random. It was now possible either
simply to take the most meritorious variable, or
to combine the features of both methods by comparing

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/48/311611 by guest on 13 M
arch 2024



50 Burstall

the 'badness' after narrowing the 2 or 3 most meritorious
variables, instead of 2 or 3 chosen at random. This
combined method turned out to be the fastest.

6. Computer results
A program was written in ALGOL for the Elliott 503

computer using a recursive procedure to solve each sub-
problem. Table 1 shows five problems which were run
(some of them taken from Brooke, 1964). Table 2 shows
the results. Each problem was run five times for each
set of conditions using different random numbers. The
merit method led to rather shorter computing times than
for the random method in spite of the extra calculation
involved. Choosing two or three variables for splitting
and taking the one with least badness (space-size) was
faster than choosing just one, in spite of the extra time
spent doing tentative splitting. This showed that this
look-ahead feature was worthwhile. The effect was only
evident for the random method and not for the merit
method, as would be expected since in the merit method
the one variable was preselected with a certain amount
of cunning.

The program also solved several other word sum
problems successfully. The program was extended to
maximise a linear function of the variables in order to
see whether it could tackle integer linear programming

type problems, but the search tree increased too rapidly
for it to have much success with even rather easy
examples. A moie detailed account of the program and
results is given in Burstall (1965).

PROBLEM 1

K
K
K

K D

CA R

D F
D N
D F
P 1

E E

9
2
6
0

R

Table

Cryptarithm

PROBLEV

0
T

F 0

S E V

PROBLEM 4

H (
P (

0
0

C U S
C U S

i 2

N
W
U

E

1
problems

E
0
R

N

U
F

N

PROBLEM 3

S
D

R

A
R

A

PROBLEM 5

s
M

E
O

N
R

U
N

T

D
E

S A
R A

A X

P R E S T O M O N E Y

7. Concluding comments

This program gives a simple 'text-book' illustration
of the use of heuristic tree search techniques (Golomb

K D F 9
K D N 2
K D F 6

K D P 1 0

C A R E E R

PROBLEM—| 16-5 I—

—

E

-

K

—

15 8

low

high

15-8

1 0 8

low

high

FAIL

h

-
F

P

N

9-7

low

high

9-7

1 0 1

low

high

7-4

1 0 1

low

high

9-7

SUBPROBLEM

low

P

high

• t
SUBPROBLEM

P

N

H

9-4 —

— FAIL

low
p

high

— FAIL

high

SOLN. |

6-8 —

5-3

low
F

high

— FAIL

-

low

high

FAIL 1

4-9

low

high

FAIL

low

high

FAIL

SOLN.

The figures in the boxes give the 'space-size' after narrowing i.t. the product of ranges of variables on a natural log scale. FAIL
indicates that a contradiction has been derived, SOLN indicates a solution. Variables were selected by the random approach.

Fig. 1. A typical search tree

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/48/311611 by guest on 13 M
arch 2024



Word sum puzzles 51

and Baumert, 1965; Doran and Michie, 1966; Hart,
Nilsson and Raphael, 1967; Burstall, 1967). It is closely
related to the 'Branch and Bound' method of Little et al.
(1963) and to the 'semantic tree' approach used in
mechanical theorem proving (Robinson, 1968).

The main points in which it is more elaborate than the
usual tree searching methods (such as the Doran and
Michie 'Graph Traverser') are:

(i) Such methods usually take a fixed tree of hypotheses
and concentrate on finding a good sequence of
exploration. This program determines experi-
mentally what tree of hypotheses shall be grown.

(ii) At each stage before any alternative hypotheses are
formulated every effort is made to simplify the
problem by making deductions. This produces a
very much smaller tree.

Table 2. Results for word sum problems, various parameter values

Search was terminated on finding one solution
Mean of 5 replicates with different random numbers
R = random method
M = merit method

NO. OF VARIABLES
TENTATIVELY SPLIT

1
2
3

TIME IN SECONDS

PROBLEM NO. (SEE TABLE 1)

1

R

13
12
12

M

10
11
10

2

R

41
22
29

M

20
20
20

3

R

21
21
21

M

16
16
16

4

R

16
12
10

M

11
9

10

5

R

11
9
9

M

9
8
9

MEAN

R

20
16
16

M

13
13
13

(The Elliott 503 has a time of 7 • 5 microseconds for most simple operations.)

Acknowledgements
This work was supported by a Kenward Memorial

Fellowship at Birmingham University and a Science
Research Council Fellowship at Edinburgh University.
The material formed part of a Ph.D. thesis at Birming-

ham University and I am grateful to the Department of
Engineering Production there for permission to publish.
Thanks are also due to Professor D. Michie of Edinburgh
University for his encouragement in the later stages of
this work.

References

BEALE, E. M. L. (1965). Survey of integer linear programming, Op. Res. Quart., Vol. 16 (2), pp. 219-228.
BROOKES, M. (1964). 150 puzzles in cryptarithmetic, New York: Dover.
BURSTALL, R. M. (1965). A tree searching method for solving integer linear inequalities, Experimental Programming Reports:

No. 10, Edinburgh: Department of Machine Intelligence and Perception, University of Edinburgh. (Available on
request.)

BURSTALL, R. M. (1967). Tree searching methods with an application to a network design problem, Machine Intelligence 1 (eds.
N. L. Collins and D. Michie), Edinburgh and London: Oliver and Boyd, pp. 65-87.

DORAN, J. E., and MICHIE, D. (1966). Experiments with the Graph Traverser program, Proc. R. Soc. A, Vol. 294, pp. 235-259.
GOLOMB, S. W., and BAUMERT, L. D. (1965). Backtrack programming. / . Ass. Comp. Mach., Vol. 12, pp. 516-524.
GOMORY, R. E. (1963). An algorithm for integer solutions to linear programs, Recent Advances in Mathematical Programming,

(eds. R. L. Graves and P. Wolfe), McGraw-Hill, pp. 269-302.
HART, P. E., NILSSON, N. J., and RAPHAEL, B. (1967). A formal basis for the heuristic determination of minimum cost paths.

Research Report, Stanford Research Institute, Menlo Park, California.
LITTLE, J. D. C , MURTY, K. G., SWEENEY, D. W., and KAREL, C. (1963). An algorithm for the travelling salesman problem,

Op. Res. Quart., Vol. 11, pp. 972-989.
ROBINSON, J. A. (1968). The generalised resolution principle. Machine Intelligence 3 (ed. D. Michie), Edinburgh: University

Press, pp. 235-259.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/48/311611 by guest on 13 M
arch 2024


