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Polynomial curve fitting when abscissas and ordinates
are both subject to error

By M. O'Neill,* I. G. Sinclairf and Francis J. Smith
Departments of Computer Science and Applied Mathematics, School of Physics and Applied Mathematics,
The Queen's University of Belfast, Northern Ireland

An iterative method is described for the least-square curve fitting of a polynomial to a set of points
in two dimensions when both the abscissas and ordinates are subject to error and when the weights
of all the readings are known. The process converges, in general, to a polynomial giving the
exact minimum of the 'weighted' perpendicular distances onto the curve. It is shown that in
practice Deming's method gives a solution close to this optimum polynomial.
(First received December 1967 and in revised form July 1968)

1. Introduction

The problem of the least square curve fitting of a function
to a set of experimental data (x;, y,), 1 < / < n, when
Xj and y, are both subject to error with weights u>xi
and cjyi respectively, has been described and reviewed
by Deming (1943). lff(x,ar) is the function and ar,
1 < r < m, is a set of variable parameters the problem
reduces to the minimisation of the sum of the squares
of the weighted perpendicular distances from the points
(xh yt) to the curve, that is, the minimisation of the sum:

S(ar, x',) = 2 {o)xl(x, —

+ •Ax',, a,)]*} (1)

with respect to the parameters ar and with respect to the
'adjusted' values x\ where [*;,/(*,')] lies on the curve.

A method for finding the approximate minimum of
S(ar, xi) when/(x, ar) is the polynomial

f{x, ar) = 2 a,xr
0

(2)

has been described by Deming, but this does not give the
exact minimum of S. More recently a number of
writers have studied the special case when f(x, ar) is a
straight line. This work has been reviewed by York
(1966) who has developed a method for the straight line
based on the solution of a cubic equation and a given
approximate value of the slope of the line.

In this paper we describe an iterative method which
in general determines to any given accuracy the poly-
nomial minimising S; the polynomial can have any
specified degree so our solution includes the case of the
straight line. We show also that Deming's method
quickly gives a close approximation to the exact solution.

We use expansions of f{x, ar) in sets of orthogonal
polynomials, following Forsythe (1957), because this
reduces computing time and increases the accuracy of
the computations. However, the theory we describe can
be simply altered to fit a power series in cases when the
coefficients of certain powers are constrained (for
example, we might wish to fit a quadratic of the form
J\x) = a0 + o4x

4 to the set of data).
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2. Theory

The problem to be solved is basically the minimisation
of the function S(an x't) with respect to its independent
variables, ar and x\. A number of methods are available
for minimising a function in many variables; these have
been recently reviewed by Powell (1966). Using a library
program for our I.C.T. 1905 computer based on the
method for minimising a sum of squares due to Powell
(1965) we were able to obtain the polynomials for which
S is a minimum, but this and other common methods for
minimising a function are inefficient compared with the
methods we are going to describe because they are not
able to take account of certain special features of the
function S.

The minimisation process which we found to be most
successful is based on the well known Newton-Raphson
method for minimising a function of many variables.
In the following we adopt the notation of Powell's
review as far as possible.

2.1. Newton-Raphson method

We expand/(x, ar) in the form

fix, ar) = 2 arpr(x)
r=0

(3)

where pr(x) is a polynomial of degree r. The orthogonal
properties of these polynomials will be discussed later.
We now wish to minimise S{ar, x'i). We consider an
approximate set of variables ar0 and x'i0 close to the
minimum of S, then if the minimum is at ar = ar0 + 8ar
and x'i = x'i0 + Sx'i

(4)

at the minimum and using Taylor's series to first order
in 8ar and SxJ

and
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We have m + n non-linear equations in the m + n
unknowns 8as and 8x); these equations can be written
in matrix form by defining the following matrices and
vectors for 0 < r, s < m and 1 < i, j < n:

. A -
(7)

Then in the form of a partitioned matrix we have

L
If we write the partitioned matrix in this equation as G,
then the corrections 8ar and Sx- are given by the matrix
equation

The position of the exact minimum can be found by the
successive use of this equation (provided that the
iteration converges).

This process appears impractical because at each
iteration we have to invert a matrix of order m + n,
and in many cases n may be large (it is not unusual to
curve fit several hundred experimental points). The
problem is made easier, however, because

5 y = O i f i # y ; (10)

and, in addition, if the polynomials pAx) are orthogonal
over the set of points x'i0 with respect to the weights
coyh that is if

2 pA.x'i0)ps(x'iQ)<oyi = 0
i

01)

then

Therefore A and B are diagonal matrices. In addition
the elements of the matrices C given by

C, = - 2wyl £- {[y, - Ax'i0)]pr(x'i0)} (12)
°XiO

contain fewer terms and are usually smaller than the
diagonal elements Arr and Bn. To a first approximation,
therefore, we can approximate G~l by the simple
diagonal matrix

r-i
G =

Then

(13)

(14)

which, after simplification, takes the form

ar = 2 ">yiyiPAx'io)l 2 Uyi[pAx'io)]2-
i= 1 i= 1

Similarly

yl\yi — f(x'iQ)]fXx'io) <i - x'io)
(16)

In this last equation more accurate values of x\ are
obtained if the new values of ar given in (15) are used in
the calculation off(x'lQ), /'(*/o) and/"(*/o) m (16).

2.2. The algorithm
We suggest the following process, based on equa-

tions (15) and (16), for finding the least-square curve fit.
We begin with the experimental points JC, as our first
approximation to x,'; that is we let x'l0 = x,. The poly-
nomials orthogonal over this set of points are generated
by the recurrence relations (Forsythe, 1957).

po(x) = 1; Pi(x) = (x — a,);

pAx) = (x - «f)p,_ ,(x) - £r/;r_ 2(x), (17)

in which

«r = S { ^O} / S {«,/[/»,-1 Wo)]2}.

Pr = S {w,ipr_ |(x,>,.j(x,'o)x;«)/ S {«,/[/»,-2Wo)]2}-
(19)

The coefficients ar are computed from equation (15).
This gives us the polynomial which fits the experimental
data when the x; coordinates are error free. We use
this as our first approximation.

We now iterate to the correct solution. We begin by
computing from equation (16) approximate values of x,'.
In (16) the quantities/(x,'o),/'(x,'o),/"Wo) are computed
using the algorithm for summing orthogonal polynomial
series and their derivatives due to Smith (1965). In this
algorithm less than 6m multiplications and 9m additions
or subtractions are needed to compute all three quan-
tities with minimal rounding error. The summation in
the numerator in (15) is evaluated in the same way.

When the new set of x\ are calculated, a new set of
orthogonal polynomials are generated by computing
sets of ar and pr using (18) and (19), and ar coefficients
using (15). This completes the first iteration and gives
us the second approximation to the polynomial. This
iterative procedure is then repeated till convergence is
reached. We call this the direct iterative method.

The total amount of computation is small and it
increases linearly with the number of experimental points.
Each iteration consists of approximately (17 nm)
multiplications, (16 nm) additions and subtractions and
(2 nm) divisions where n is the number of experimental
points and m is the order of the polynomial. On our
I.C.T. 1905 computer when n = 10 and m — 2 a com-
plete iteration took approximately 2 seconds and cost
about 6 pence. Comparable costs can be worked out
for other problems from these figures.

Often a polynomial power series is required rather
than an orthogonal polynomial at the end of the cal-
culation. If we write

m m

2 arpr(x) = E csx
s;

r=0 s=0

then the coefficients, cs, can be calculated from the
following recurrence relations:

yk . = 0 if k > / or if k, i < 1;

m

cs = 2 arys+,, r+, for 0 < s < m.
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2.3. Convergence
A question naturally arises about whether or not this

direct iterative procedure converges, and if it does con-
verge, is it to the minimum? We found no proof that
the process always converges, but a large number of
examples were tried, varying the weights and the posi-
tions of the abscissas, and convergence was found in all
cases. Examples are given in a thesis by O'Neill (1967).
However, in a few extreme cases, such as in an example
we give at the end of this paper, convergence is slow
and over 100 iterations are needed to give accurate
results. It therefore seems likely that examples may be
found of non-convergence or of convergence which is
negligibly slow. If any such cases occur they might be
solved by other methods such as Powell's method for
the minimisation of a function or using the exact inverse
of G in place of the approximate inverse in (13).

It is easily shown that if the iteration does converge it
usually converges to the polynomial minimising 51.
From (14) and (16) it follows that for all r and i

Hence
<JS\

(20)

(21)

for all r and /. Thus, a minimum is obtained provided
that all of the second derivatives

A
a n d

are positive, the off-diagonal elements being small. It
is readily shown that the first of these second derivatives
is always positive, but the second, given by the deno-
minator in equation (16), is unfortunately not necessarily
positive, though in practice it almost always is so.

A case when this failure might occur and when there
are three curves making 5 stationary is illustrated sche-
matically in Fig. 1 (the x and y coordinates have been
scaled so that the lines joining {xh yt) to the points on

the curve at which \JT—>) = 0 are perpendicular to the

curve). If the curve passes through a sharp maximum
and if the experimental point (*,-, yl) lies below the
maximum then as the point [x,',./(x,')] passes along the
curve, the partial sum

>yl
[y, - (22)

passes through a maximum at P2 and two minima at Py
and P3. It is possible that our process might find the
maximum point, but this possibility is easily eliminated
(in a computer program) by checking that the deno-
minator in (16) is not negative. If it is negative then it
follows that we have found a maximum point and that
there are two minima on either side of the maximum;
approximate positions of these minima can be found by
scanning S", on either side of P2 and more accurate
values can be calculated using Newton's method in (16).
The lowest of the two minimum points (in the example,
P3) then gives us our value of x'j.

It might happen that we find the local minimum at P{
initially rather than the lower minimum at P3. This
possibility can only be guarded against by scanning 5,

Fig. 1. A schematic illustration of an example in which S,
the weighted sum of the squares of the errors, has a local

maximum and two minima

when an experimental point is found inside a maximum
or minimum off(x).

Another difficulty occurs if x'i0 is close to either of the
two points of inflection, one of which is between P, and
P2 and the other between P2 and P3. Then the deno-
minator in (16) will be small and the correction to x'i0
might be unrealistically large. This can be guarded
against in a computer program by checking that this
correction is never larger than some specified value, say
the larger of i|x, + 1 — x,\ and ^|x, — x,_,|. If it is
larger then 5, must be scanned and the minimum found
as before.

2.4. A possible improvement
In practice we have found that at least two iterations

and sometimes more than 100 iterations were needed to
obtain convergence in our algorithm. We thought this
might be improved by obtaining a better approximation
to the inverse C"1 than that given in (13). We obtained
a better inverse by noting that if X\ is an approximate
inverse to the matrix G, then X2 is a better approxi-
mation if

X2 = (23)

Putting Xt equal to the expression in (13) our improved
inverse is given by

c
where

(24)

(25)
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The matrices A, B and C are denned in (7). Then

(26)
and

These are identical with the equations we used previously
except for the additional terms containing the matrices
Q and Q'.

In practice we found that this gave hardly any improve-
ment although it involved considerably more computa-
tion. If in the calculation of x\ using equation (27) we
use the values a^ in the computation of f(x) and its
derivatives, then from its definition it is easily shown that
g( l ) = 0. So the correction Qgw in (27) also is zero.
Similarly it can be shown that if equation (27) is used
successively until x,' is the minimum point of S, then in
the subsequent calculation of ctr in (26) g(2) = 0 and the
extra correction in (26) is zero. Thus no improvement
is obtained. If, however, we use the new values of ar

in the calculation of x\ in equation (27), then g(1) will
not be zero; nor will the correction be zero, but it will
still be small. Similarly the correction in (26) will not
be zero, but it will be small except in the initial step.
In practice we found that the improvement was slight
and rarely reduced the number of iterations although
it increased the total amount of computing in each
iteration. We conclude that this improvement is not
worth the extra computing effort. We think that other
approximations to the inverse of G are unlikely to be
more efficient.

2.5. Deming's method
In a method due to Deming (1943) an approximate

solution of considerable simplicity is obtained. The
process we describe below is the same in principle as
Deming's method but it is slightly different in practice.

At the maximum since r—-, = 0, we can write

(28)
wxi

Therefore, substituting in S we have, after simplification,
that

(29)

W, = to,,- ( l + ^ [A*/where

Deming now uses Taylor's theorem to eliminate /(*,')
and/'(x/) from these equations by assuming that

Ax',) =Ax,) + (*/' - */)/'(*/),

/'(*/') =/'(*,)• (30)

This is his first approximation when/(x) is not a straight
line. Using (28) again, S takes the form

+ ^ [/'(x,where

In his second approximation Deming assumes that to,
does not vary quickly with respect to the parameters ar;

thus co, is kept constant when S is differentiated with
respect to the parameters ar. Hence for 0 < r < m we
have

S»,b/-^i)W*i) = 0- (32)
j

This gives us m + 1 linear equations in the m + 1
variables a0 to am if we substitute an approximate value
of/'(*,) into the expression for to,.

In practice we first solve equations (32) with to,
replaced by a>yi (equivalent to assuming that there are
no errors in the x readings), then using the values of
/'(*,-) obtained from this solution we calculate to,- and
solve equations (32) again. The process can be repeated
till convergence is reached. In each iteration we need
approximately (15 nrri) multiplications, (13 nrri) additions
and (2 nrri) divisions, less than in each iteration in the
previous method. In addition many fewer iterations are
needed to reach convergence as we will show later.

2.6. An improvement on Deming's method
Deming's method works well in practice but it does not

give the exact minimum of S because of the two approxi-
mations introduced. The first approximation in equa-
tion (30) can be eliminated by using equation (29)
directly, that is by assuming W, is constant and finding
the position of x\ by iteration. We begin with W-, = to ,̂-,
calculate an approximate curve fit/(x), find x\ from (28),
calculate/'(x/) and Wh recompute a new polynomial,
assuming Wt is constant and repeat till convergence is
reached.

This should eliminate errors due to the first approxi-
mation and should give more accurate answers, but in
practice we found that it made little difference to the
polynomial fit and in some cases gave values further
from the minimum than Deming's method. Obviously
most rof the error in Deming's method comes from
keeping to,- constant when differentiating with respect
to ar.

We conclude, therefore, that this apparent improve-
ment is not worth the considerable extra computing
effort.

3. Results
The direct iterative method in §2.2 and Deming's

method have been tried on a number of real examples
taken from scientific and industrial data and on some
artificial examples chosen specifically to test the methods.
Details of these are given in two theses by O'Neill (1967)
and by Sinclair (1967). Some of the results obtained by
examining these examples have already been mentioned.

Our main conclusions are that the direct iterative
process does give a polynomial curve fit minimising S,
the sum of the square of the errors, and that it usually
does this in only a few iterations and with little computer
time or computer storage. Deming's approximation is
fast and so accurate that a better result will seldom be
needed. Thus we suggest that Deming's method should
be used to give us our first approximation to f{x) in the
direct iterative procedure. Usually only one iteration
will then be necessary as a check.

In the rare event when the direct iterative process does
not converge quickly, Aitken's process for accelerating
a slowly converging sequence has been found to be useful.
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We suggest that this procedure should be adopted if
convergence is not reached after about 10 iterations.

We illustrate these main conclusions with three
examples. The first example, due to Pearson (1901), is
the fitting of a straight line to the set of data given in
Table 1, with all of the coxi and coyi weights equal to
unity. Pearson obtained, as the slope of the line,

i

1
2
3
4
5

Xi

0 0
0-9
1-8
2-6
3-3

Data

yi

5-9
5-4
4-4
4-6
3-5

Table

due to

1

Pearson

i

6
7
8
9

10

Xi

4-4
5-2
6 1
6-5
7-4

yi

3-7
2-8
2-8
2-4
1-5

—0-54556, York (1966) obtained —0-546, Deming's
method gives —0-540 and the iterative approach gives
Pearson's correct result, —0-54556 after 6 iterations.

Our second example is due to York who introduced
the extreme set of weights given in Table 2 for Pearson's

Table 2

Weights given by York for the data in Table 1

/
1
2
3
4
5

a>xi

1,000
1,000

500
800
200

Wyi

1 0
1-8
4 0
8 0

2 0 0

i

6
7
8
9

10

(Oxi

80
60
20

1-8
1 0

COy,

20
70
70

100
500

Using this as our first approximation Deming's method
gives a slope, —0-463 and a value of S = 11-95653 in
two iterations. The direct iterative method converges
slowly: it obtains a result as accurate as Deming's
method only after 40 iterations, but after 125 iterations
it obtains a slope, —0-481 and a value of S down to
S = 11 • 86646. Using Deming's method as our first
approximation and Aitken's accelerative process begin-
ning after six iterations we obtained a slope, —0-4805
and the lowest value of S, S = 11- 86635. This involved
a total of 13 iterations.

In our third example we fit a polynomial of degree 3
to Pearson's data with unit weights. Neglecting errors
in the x-coordinates we find that/(x) = 5-982 — 0-9936*
+ 0- 1563x2 - 0-0138*3 with S = 0-60991. Using
Deming's method we obtain after 4 iterations that

f(x)= 5-9988 - 0-1570x2-0-0137x3

data and obtained a slope —0-477. If the jc-coordinates
are assumed to be free from error, the slope is —0-611.

and that S is reduced to S = 0-48677. In the mixed
method of Deming's approximation and Aitken's
accelerative process we find after 9 iterations that f(x)
converges to

f(x) = 6-0152 - 0-998x + 0-1525*2 - 0-0132*3

with S = 0 • 48515. This again illustrated that Deming's
method gives a good first approximation, being correct
to one or two units in the second decimal place.

Acknowledgements

One of us (F.J.S.) has pleasure in thanking Mr. C. D.
Kemp, Professor J. Meinguet and Mr. M. J. D. Powell
for some helpful suggestions.

This research has been sponsored in part by the
Physics Branch, Office of Naval Research, Washington,
D.C., under Contract No. F61052-68-C-0012, and in
part by the Ministry of Education, Northern Ireland.

References

DEMING, W. E. (1943). Statistical Adjustment of Data, New York: Wiley.
FORSYTHE, G. E. (1957). Generation and use of orthogonal polynomials for data fitting with a digital computer, / . Soc. Indust.

Appl. Math., Vol. 5, pp. 74-88.
O'NEILL, M. (1967). Least squares fitting of a polynomial when both sets of data are subject to errors. Thesis, Queen's

University, Belfast.
PEARSON, K. (1901). On lines and planes of closest fit to systems of points in space, Phil. Mag., Vol. 2, pp. 559-572.
POWELL, M. J. D. (1965). A method for minimising the sum of squares of non-linear functions without calculating derivatives,

Computer Journal, Vol. 7, pp. 303-307.
POWELL, M. J. D. (1966). Numerical Analysis: an Introduction, Ed. J. Walsh, London: Academic Press, pp. 143-147.
SINCLAIR, I. G. (1967). Polynomial least squares fitting when both abscissae and ordinates are subject to errors. Thesis, Queen's

University, Belfast.
SMITH, F. J. (1965). An algorithm for summing orthogonal polynomial series and their derivatives with applications to curve

fitting and interpolation, Math. Comp., Vol. 19, pp. 33-36.
YORK, D. (1966). Least-squares fitting of a straight line, Can. J. ofPhys., Vol. 44, pp. 1079-1086.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/52/311623 by guest on 19 April 2024


