
Systems analysis documentation: computer-aided data
dictionary definition

By P. J. H. King5

This paper discusses the need for formal notations and techniques for use in systems design and
analysis. It argues that the data dictionary is a central tool in this work, makes proposals for
formalising it and suggests computer based procedures for aiding its construction.
(First received February 1968 and in revised form September 1968)

A need exists for the development of standard techniques
and formal notations for use in systems design and
analysis. Their value lies in expediting work, facilitating
work sharing by aiding communication between team
members, assisting supervision, and providing a clear
and generally understood design/implementation inter-
face. Canning (1966) states '. . . our present tools are
just too cumbersome to undertake the more complex
studies in the average business environment'. The need
for such methods is referred to in Gibson et al. (1967)
and has been cogently argued by Grindley (1966) whose
suggestions are further discussed in King (1967). An
attempt has been made to establish a formal theoretical
basis for this type of work described by Bosak et al.
(1962) and briefly by Clippinger (1962). This, however,
is at present far removed from the realm of day to day
practical application.

A scheme designed for the documenting and study of
existing data systems called AUTOSATE has been
developed by Butler et al. (1964). Variants of these ideas
under other names, e.g. Dataflo, Crowther-Watson
(1967), also exist. The basic concepts are those of
'station' and 'event chain'. A data 'system' is divided
into a number of separate 'stations', and information
flowing between stations and data retention at stations
is recorded. This is processed to produce documenta-
tion and identify 'event chains' or sequences of derivative
connected activity. The basic philosophy is that we
record the present system with a view to improving on it.
It seems likely that outside the large complex data
systems of the military area for which Autosate was
designed, the approach will be more appropriate in an
industrial context than in business data processing. In
an industrial context the data system, though essential,
is ancillary to the manufacturing activity, and any data
system redesign is constrained by the nature of the
existing plant and machinery. In the context of business
data processing there is normally more scope for data
systems redesign, and it is frequently better to identify
basic requirements and design a new system based on
these than to attempt to record and relate all details of
every existing clerical process, although the essential
functioning and purpose of these activities must be well
understood.

The Autosate approach is to consider the 'total
system' and the idea of an 'application' is rejected.
This view is not adopted in the present paper, and we
conform to the usual notions of applications and related
applications. Once the broad scope of an application is
refined and interfaces with continuing manual and other

* Computer Unit, University College of Wales, Aberystwyth

systems roughly specified, a detailed systems study within
these limits is required to produce program and other
specifications. This activity is defined in Gibson (1967)
as systems design and in Canning (1966) as levels 1 and 2
of systems work. It is argued here that part of this
activity should be to create a data dictionary for the
application. This will detail data required on output
documents, information provided by input documents
and data for retention on files. The dictionary should
define the structuring of data including, where relevant,
structures occurring at intermediate stages in processing.
Thus if input data is to be edited to a standard internal
form, then this form may be specified.

The significant part that a data dictionary can play
has been well demonstrated by Fisher (1966) in an
attempt to clarify the important parts of satisfactory
documentation. The dictionary described by Fisher is
fairly primitive. It is only a slight elaboration of the list
of data elements involved which one expects to find with
any reasonably satisfactory piece of systems documenta-
tion. A similar dictionary exists in the documentation
produced by Autosate which also shows the relation-
ships of data elements to the defined 'stations'. The
dictionary of Systematics (Grindley, 1966; King, 1967)
is also a simple list of data elements with their elementary
properties, but in addition there is an attempt to
categorise elements as 'given' and 'derived' with respect
both to the whole system, and to various sub-systems.

This paper makes no attempt to propose a compre-
hensive methodology for use in systems design and
analysis along the lines of the three proposals we have
discussed. Rather there is a recognition that any such
proposals will include some form of data dictionary, that
existing methods use some form of data dictionary and
that the data divisions of COBOL and NEBULA
(Braunholtz et al. 1961) were an early attempt at
formalising this concept. It is suggested that the
concept of a data dictionary for an application is
important and that its content and form should be
further developed. Its construction is facilitated if this
is computer aided, and suggestions for this are made.
The work of constructing a dictionary aids analysis by
documenting and clarifying work as it proceeds but its
final purpose is to specify in a precise and convenient
form the data involved in an application including its
grouping and structure.

The major data processing languages (e.g. COBOL,
NEBULA) recognise the importance of data definition
by having a distinct data division. Recent language
development lays even greater emphasis on data structure

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/6/311638 by guest on 13 M
arch 2024



Systems analysis documentation

specification and BCL (Hendry, 1966; Hendry and
Mohan, 1968) could be described as 'structure oriented'.
The systems methodology proposals discussed in the
foregoing all present their data dictionary as an alpha-
betic list of data element names together with field
requirements and miscellaneous information. They do
not include group or structure names in the dictionary
nor provide formal facilities for group naming and
specification. The data divisions of COBOL and
NEBULA, on the other hand, emphasise structure and
display it clearly. BCL does not attempt to display
structure but specifies it precisely in a very simple way.

Notation of the BCL type is adopted in the suggestions
in this paper. Information conveyed in this notation is
processed to provide data dictionary documentation, the
self-consistency or otherwise of the information being
determined during processing. Amending and correcting
facilities are provided to alter and improve the docu-
mentation. It is suggested that the processing involved
should be a computer function.

Attributes of a data dictionary—programming requirements
As stated above a data dictionary provides working

information for implementation. What does this
requirement involve?

First, it must specify all data elements involved giving
a useful and meaningful name to each for human com-
munication purposes. A field specification for each
element or adequate information to determine one is
required, together with allowable ranges for numerical
items and sets of allowable values for non-numerical
items. Secondly, it should provide information on the
grouping and structuring of the data, since this is often
a natural way of defining records within a programming
scheme. As with elements, sensible and meaningful
names are required for groups and structures. A third
requirement is information on variable and optional
occurrence of data. For example, in an input structure
groups or elements occurring optionally or a variable
number of times must be so specified. With variable
occurrence, information is required on variability likely
to be expected in practice, since decisions may be
necessary on whether to use fixed or variable length
records.

Data names which are clearly meaningful frequently
prove rather cumbersome for programming. A fairly
common technique of avoiding this is to assign simple
codes as alternatives to names to give the required
brevity. We suggest that a data dictionary should define
such codes.

Data dictionary construction during analysis and design
Data definition in programming requires individual

data elements to be identified and defined before groups
and structures; there is definition 'upwards' from the
elements. This is so even where the notation (e.g.
COBOL) is apparently 'downwards'. It is necessary for
program generation but implies that formalised docu-
mentation and use of the computer's checking capacity
must wait on all detail being specified.

Data specification is 'from the top down', that is
broad groups and structures are defined first and given
names, then sub-groups and sub-structures and so on

down to the individual elements; this is the natural
approach of systems analysis. BCL has a simple
notation for such a method of working and groups and
structures are defined by statements of the type

A is (B, C, D)
B is {X, Y), etc.

This notation corresponds to the natural approach of
systems analysis. In BCL the above definition of A is
only valid if B, C and D are already defined. Use of
this type of notation for analysis and design requires
this restriction to be relaxed, since introduction of data
names without a precise definition must be allowed.
There will, of course, be a general idea of what such a
name signifies but there must be freedom to leave precise
specification to later.

In the example above A and B are defined as group
names but C, D, X and Y remain undefined. Sub-
sequently they may be defined as group names or
specified as data elements by the giving of a field
definition, information on permissible values, unique-
ness, etc. There is advantage in not requiring field
specifications at the time names are introduced as is
usually required in programming languages. Names
not defined as groups or given a field definition represent
data about which further information must be provided.

A large number of definitions of the type discussed,
together with field specifications, information on
variability, optionality, etc., would not be very readable
even though precise in information content. In addition
to proposing formalised ways of giving these definitions
it is suggested they should be processed by computer,
vetted for errors and used to create a data dictionary
file. From this the data dictionary documentation will
be obtained. Thus it is explicitly recognised that part
of systems analysis and design is itself data processing
and that a computer can be used advantageously in this.
An important feature is that the dictionary file is created
at an early stage and information is added continuously
as the work proceeds. A display is always available of
the 'state of the work so far' with processing and clari-
fication as it proceeds. Much of the formal documenta-
tion chore thus becomes a computer function. Work
outstanding is indicated in the dictionary documentation
and, where a team is involved, there is automatic amal-
gamation of different members' work, each receiving
up to date documentation of the whole project in
standard form.

The proposed data dictionary documentation
It is suggested that data dictionary documentation

should have four main sections although when complete
the fourth will not be present. The four sections are:

(i) An alphabetical list of all data names—the main
dictionary.

(ii) A list of data elements only, giving field descrip-
tions and information on permitted variability,

(iii) A document for each major structure displaying
the data relationship. This includes linear order-
ing information where relevant, e.g. for an input
structure present on paper tape other than in its
natural order.

(iv) A list of undefined data names. This indicates
work still to be done.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/6/311638 by guest on 13 M
arch 2024



8 King

We do not attempt to give full details of these documents
here although some features are apparent from the
example which follows. Briefly the alphabetical list, or
main dictionary, gives a code for each name which is
used in the remainder of the documentation and indicates
whether it is an element or group name. If it is part of
another structure or structures the reference(s) of the
containing structure(s) are given. If the dictionary
covers data for more than one procedure area then the
relevance of the data to the procedure areas is specified.
It is important to emphasise that the main dictionary is
a list of data items that occur in the system. It is not a
list of suggestions for identifiers for parts of computer
store. The second item of documentation lists all data
elements, together with information necessary or desirable
if satisfactory programs are to be obtained. The third
part gives conventional COBOL type documentation for
each major structure including level numbers. The
fourth part will contain no information when the
documentation is complete. At an intermediate stage it
gives all data names which have been introduced either
as part of a group definition or individually and have
not been specified either as group names or as data
element names. Essentially this list is an indication of
work requiring to be done provided the major structures
in the application were identified initially and there have
been no omissions during subsequent breakdown.

An illustrative example
We give a simple illustrative example which is intended

to be self-explanatory. Some information supplied
during analysis and design is given in {a) and the docu-
mentation derived from it as a result of processing in (b).
It should be emphasised that information of the type
shown in (a) may be in any order and added to a
computer-held data dictionary file in piecemeal fashion.
Statements are available for defining structures in the
way already described, for specifying multiple occurrence
of data items or structures, for giving field specifications,
ranges, and allowable sets of values.

The four sections of the resulting dictionary docu-
mentation are shown in (b). In the main dictionary, for
each name there is a code and type indicating element
or group. The context gives the level at which the name
occurs in a group and the code of the immediately
containing group or a reference to a major structure
display. Also the number of occurrences of the item
within its context is given.

(Jb) Dictionary documentation derived from file
(i) Main Dictionary

(a) Information supplied by the problem analyst
DAILY-TAKINGS is (KIOSK, DAY, DETAIL

occurs 0 to 40 times, BANKING)
DAILY-TAKINGS comment FILE RECORD

STRUCTURE
DETAIL is (CODE, AMT)
CODE value unique within DAILY-TAKINGS,

range 1 thru 40
AMT field 999.99
BANKING field 9999.99
WEEKLY-TAKINGS is (KIOSK, WEEK, DETAIL

occurs 0 to 40 times, TOTAL-BANKINGS)
DETAIL in WEEKLY-TAKINGS similar DETAIL

in DAILY TAKINGS
KIOSK common TO BOTH STRUCTURES

Code
Al
A2
Bl
Cl
C2
Dl
D2
D3
D4
Kl
Tl
Wl
W2

Con-
Type text

AMT*IN*D3 E
AMT*IN*D4 E
BANKING E
CODE*IN*D3 E
CODE*IN*D4 E
DAILY-TAKINGS G
DAY
DETAIL*IN*D1 G
DETAIL*IN*W2 G
KIOSK
TOTAL-BANKINGS
WEEK
WEEKLY TAKINGS G

(ii) Data element field description
Code
Al
A2
Bl
Cl

C2

Name field
AMT*IN*D3 999.99
AMT*IN*D4 999.99
BANKING 9999.99
C0DE*IN*D3 99

C0DE*IN*D4 99

(iii) Major structure displays
(1) 01

3 D 3
3 D 4
2D1
3 D 3
3 D 4
1(1)
2 D 1
2 D 1
2W2
2 Dl 2 W2
2 W2
2 W2
1(2)

Occur-
rence

1
1
1
1
1

1
0 to 40
0 to 40

'. 1
1
1

value restrictions

range 1 thru
unique within
range 1 thru
unique within

40 value
Dl
40 value
W2

DAILY-TAKINGS comment FILE RECORD
STRUCTURE

02 KIOSK
02 DAY
02 DETAIL occurs 0 to 4C

03 CODE
03 AMT

02 BANKING

1

(2) 01 WEEKLY-TAKINGS
02 KIOSK
02 WEEK
02 DETAIL occurs 0 to 40

03 CODE
03 AMT

02 TOTAL BANKINGS

(iv) Undefined data names
D2 DAY
Kl KIOSK
Tl TOTAL BANKING
Wl WEEK

Use of 'on-line' computer facilities in systems analysis and
design

The computer function required to aid design and
analysis in the way described can be provided using
'on-line' computer facilities. A particular project is
assigned a file for its dictionary information which is
used for recording this part of the work as it proceeds.
Information is added to the file in a piecemeal fashion
whenever convenient. Up to date documentation in
whole or part is requested as needed. It would be
natural for up to date documentation to be obtained
quite frequently, particularly where a team effort is
involved, since this would provide their working papers.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/6/311638 by guest on 13 M
arch 2024



Systems analysis documentation

Also the documentation would serve as an aid to the
team leader in the management of the project.

A new set of dictionary documentation may well cause
an immediate response. If a data name reads unsatis-
factorily when seen in context the on-line facility enables
immediate substitution of a more suitable one. A field
specification may have been omitted in error and this
will be remedied on seeing the list of undefined data
names. The project leader may note that a comment
indicates misunderstanding within the group or that
ascertainable value restrictions have been omitted. In
general use of on-line facilities will greatly assist the
production of good documentation. They make 'working
on one's work' less of a chore than is otherwise possible.

Whilst we suggest that on-line processing is useful in
providing the facilities needed, the activity described can

References

also be carried out in a conventional batch processing
environment. The benefit of the on-line technique in
this context is essentially one of time scale. It allows
the user to effect small updatings of his files as the need
arises and eliminates the need for interim manual
alterations to documentation. In a batch processing
context numerous small updating runs would not be
practical and additions and amendments would have to
be batched into reasonable sized jobs. This means that
a certain amount of interim manual updating of docu-
mentation is probably necessary. Nevertheless it seems
that suitable facilities can be provided on relatively
small conventional computers and such implementations
should prove valuable, particularly where frequent small
updatings can be tolerated and the working dictionary
files therefore kept up to date.

BARNES, P. G. (1966). The job of a systems analyst, Computer Bulletin, Vol. 10, No. 3, pp. 25-29.
BOSAK, R., et al. (1962). An Information Algebra, Comm. ACM, Vol. 5, pp. 190-204.
BRAUNHOLTZ, T. G. H., et al. (1961). NEBULA: A Programming Language for Data Processing, Computer Journal, Vol. 4,

pp. 197-211.
BUTLER, D. D., FAFRBROTHER, E. M., and GATTO, O. T. (1964). Data System Design and Control using AUTOSATE—an

Automated Data System Analysis Technique, Mem. RM-3976-PR, Rand Corp., Santa Monica. Feb. 1964.
CANNING, R. G. (1966). Coming changes in systems analysis and design, Proc. 1966 ACM Nat. Conf., pp. 373-377.
CLIPPINGER, R. F. (1962). Information Algebra, Computer Journal, Vol. 5, pp. 180-183.
CROWTHER-WATSON, M. (1967). Papers on Dataflo circulated privately. Available from National Computing Centre.
FISHER, D. L. (1966). Data documentation and decision tables, Comm. ACM, Vol. 9, pp. 26-31.
GIBSON, R. P., et al. (1967). Education and Training of Systems Analysts, Computer Bulletin, Vol. 11, No. 1, pp. 11-17.
GRINDLEY, C. B. B. (1966). Systematics—a non-programming language for designing and specifying commercial systems for

computers, Computer Journal, Vol. 9, pp. 124-128.
HENDRY, D. F. (1966). Provisional BCL Manual, Internal document of Institute of Computer Science, University of London.
HENDRY, D. F., and MOHAN, B. (1968). BCL 1 Manual, Internal document ICSI 103 of Institute of Computer Science, University

of London.
KING, P. J. H. (1967). Some comments on Systematics, Computer Journal, Vol. 10, pp. 116-118.

Book Review

Optimisation in Control and Practice, by I Gumowski and
C. Mira, 1968; 242 pages. (London: C.U.P., £3 5s. Od.)

This is an extremely odd book. It is mostly devoted to
variational problems of general interest to mathematicians
and physicists but such engineering and technology as enter
into the text is of a curiously antiquated variety. Further-
more, there is very little that is concerned with practical
applications of control theory and consequently one can only
conclude that the title is particularly unfortunately chosen.
I doubt if mathematicians will find much pleasure in the
text, since many difficult mathematical results needed are
either quoted without proof or dealt with heuristically.

In fact one wonders where the authors have been in the
last twenty years, since they use a notation alien to control
people. The whole topic of the use of iterative gradient
procedures for solving the difficult non-linear control prob-

lems that are worrying us today, and all the numerical
difficulties of handling large-scale calculations in these terms
seem to have missed their gaze.

However, if one forgives the authors for their title, there is
some useful content. The authors favour the method of
tackling extremal problems developed by Caratheodory at
the turn of the century which leads to a partial differential
equation system. This is a point of view which not everybody
would subscribe to. The references quoted are almost
exclusively European and Russian sources, many of them
unfamiliar, and this perhaps helps to give the book its
distinctive flavour.

However, in the end one cannot quite forgive the authors
their title which promises so much but in the event yields so
little.

J. WESTCOTT (London)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/12/1/6/311638 by guest on 13 M
arch 2024


