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An improved procedure for orthogonalising the search vectors
in Rosenbrock's and Swann's direct search optimisation methods

By J. R. Palmer*

An improved procedure is presented for generating orthogonal search vectors for use in Rosen-
brock's and Swann's optimisation methods. The new procedure shows considerable savings in
time and in storage requirements, and deals more satisfactorily with certain cases in which the
original method fails.

(Received July 1968)

1. The Rosenbrock and Swann procedure
In the methods described by Rosenbrock (1960) and
Swann (1964) for direct search optimisation of a function
of n variables, local minima or maxima are sought by
conducting univariate searches parallel to each of the
n orthogonal unit vectors £J, \\, . . ., £° in turn, the
distances moved in these directions being du d2,. . ., dn
respectively. The set of n such searches constitutes one
'stage' of the calculation.

For the next stage, subject to certain restrictions which
need not be considered here, a new set of n orthogonal
unit vectors £[, £\, . . ., £\ is generated, such that |J
lies along the direction of greatest advance for the pre-
vious stage, i.e. along the line joining the first and last
points of that stage in w-dimensional space. For this
purpose, Rosenbrock proposed (and Swann also used) the
following calculating sequence:

n

i=k

t\ D / I D I / " j \
S/t — Bk\\Bk\. (3)

Evidently the Ak are obtained by starting with the
'greatest advance' vector At, as defined above, and
removing from it the successive orthogonal advance
vector components d^o

r The Bk are derived from the
corresponding Ak by removing the components of Ak
parallel to all the previously determined £], so that
the Bk are mutually orthogonal. Then by dividing each
Bk by its modulus, the corresponding unit vector £[ is
obtained.

2. Failure of the procedure
Swann showed that this procedure breaks down if

any of the dh for instance dp (where 1 < p < n), is zero.
Under these circumstances

= S
i=p+\

and

and

whence

£„+, =

But gp+l and
that

Bp+l =

— A..?}£\ (4)

, are orthogonal, from which it follows

I I D I _ A £1 fl

so that tjl
p+l = BP+J\BP+I\ is undetermined.

In the special case dn = 0 we have

An = Bn = \Bn\ = 0

so that £[ = BJ\Bn\ is undetermined.

Rosenbrock avoided this difficulty by ensuring that
none of the dt could become zero. In Swann's method,
however, one or more of the dt may become zero: to
avoid the trouble described above, the components of
the Ak are reordered so as to place those d-, whose
values are zero {q in number, say) at the end of the list,
and the procedure is then applied only to the first (« — q)
components. Swann showed that this still produces a
strictly orthogonal set of ix

k if the d-t concerned are
exactly zero, and that if a d-, is taken as zero when its
modulus is less than some small quantity (10~6, say),
the resulting lack of orthogonality is very small (the
scalar products of nominally orthogonal vectors being
of the order of 10-l6).

3. A new approach to the failing case
It occurred to the present author that it might happen,

if Bk+, and its modulus were evaluated, that they would
each prove to be proportional to dk, so that in evaluating
£k+l = Bk+i/\Bk+t\ the quantity dk would cancel,
leaving £|.+ 1 determinate even if dk = 0, and this was
found to be the case, subject to certain reservations.

Thus from (1), (2) and (3) above,
n

A i = 2 d,^ = Bx (where 2 denotes 2 , and corre-
i I / = i

spondingly for other sums)

(5)
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which reduces to

•Zdf

- \A2\*)Ai - (At - A2)\A2\*
M.I2

\B2\ =

(6)

V(M,|2-M2|2) (7)

M.IM2lV(M.I2-M2|
2) (8)

If dy = 0, these expressions give B2 = \B2\ = 0 and
$2 — — i° i.e. ^ remains determinate (unless 2 4? = 0).

2
Similar results are obtained for B3, \B3\ and £\, from

which it appears that in general

and

(9)

(10)

and

\ 2 - A I2) ( H )

for 2 < k < n
and that if dk_ x = 0, then Q = — ^ _ , (unless 2 4 2 = 0).

k

An inductive proof of the validity of equation (9), and
thence of (10) and (11), is given in the Appendix.

It should be noted that, in the particular case k = n,
(11) gives

i=k

so that if 4 - 1 = 0, & = - £ ! _ , (unless 4, = 0)
(special case of the above) or if dn = 0, ^ = |^ (unless
4-i=0).

Thus it is seen that the Q remain determinate, even if
one or more of the dk_ t are zero, provided only that

n

df ^ 0. This suggests using equations (5) and (11)

to evaluate the gl
k directly, subject only to a check that

2 df ^ 0, and that the components should not be
i=k

reordered.
It would also appear that this procedure might result

in a considerable saving both in arithmetic operations
and in working stage requirements, and it will now be
demonstrated that this is so.

4. Comparison of the speed and storage requirements of
the two procedures

Assuming that the dk, £k and Ak are already stored in
the real arrays d[k], xi [k, i] and A[k, i] respectively, and
that the real array t[k] has been declared to store \Ak\

2

and the real variable div to store Mfc-ilMfc|> t n e above
procedure is described by the following sequence of
Algol statements:

\ [ \
for k := n — 1 step — 1 until 1 do
t[k]:=t[k+ l] + d[k]f2;
for k := n step — 1 until 2 do

begin div := sqrt (t[k — 1] X t[k]);
if div # 0 0 then for / : = 1 step 1 until n do

xi[k, i] :=(d[k - 1] X A[k, i] - xi[k - 1, i]
X t[k])ldiv

end;
div :=sqrt(t[l]);
for /:= 1 step 1 until n do xi[l, i] := A[\, i]jdiv;

Since the calculated £1 overwrite the previous £1, this
n

sequence has the effect of putting & = £% if 2 d? = 0,
i=k

in accordance with Swann's procedure. If none of the
dk is zero, the process requires (n2 — 1) additions, sub-
tractions or transfers, (2«2 — 1) multiplications, n2

divisions and n square root determinations, while the
working stage requirement is (n + 1) real variables.

The corresponding sequence for Swann's method
requires the previously declared real arrays B[k, i] and
dot[j] for Bk and Ak.g) respectively, and the real
variable mod for \Bk\, and reads:

for k := 1 step 1 until n do
begin fory := 1 step 1 until k —

begin dot[j] := 0.0;
for / := 1 step 1 until n do

dot\J] := dot[j] + A[k, i

end;
mod := 0.0;

for /:= 1 step 1 until n do
begin B[k,i] := A[k,i\\

1 do

X xi\j, i]
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for j : = 1 step 1 until k — 1 do
B[k, / ] := B[k, i] - dot[j] X xi[j, i];
mod := mod + B[k, i] f 2

end;
mod : = 5 r̂? (mod);
for / : = 1 step 1 until n do x/[fr, /] : = B[k, i]/mod

end;

This requires n(n + £)(« + 1) additions, etc., «3 multi-
plications, n2 divisions and n square root determinations,
while the working stage requirement is (n2 + n + 1)
real variables. These figures neglect the preliminary
reordering process which is necessary, since this is
approximately counterbalanced by the reduction in the
number of £k which then have to be calculated.

The new procedure is thus seen to have considerable
advantages over Swann's (which is itself an improvement
on Rosenbrock's in respect of the univariate search) in
terms of speed, economy of storage, and ability to deal
with the case dk = 0. Specifically, the number of addi-
tions, etc., and the working storage requirement are
reduced by a factor of the order of n, and the number of
multiplications by a factor of the order of n/2.

Appendix: Inductive proof of equation (9)
If equations (9) and (10) for Bk and \Bk\ respectively,

and equation (11) for kk are assumed to be valid for a
particular value of £(>1), then using the basic equations
(2) and (3) and the explicitly derived equation (5) we have

Bk+1 =

Now Ak+\.i

and similarly

Hence

Bk+1 = Ak-

k+l 1
= Tjdf = \Ak+i\

2 (since A: > 1)
k+l

Ak+i.AJ_l

Mfc+i|2(since k + 1 >_/).

M.I2

i
- S

My-.I2-Myl2

= Ak+l
*fc+il

/-i I-M*+.I2S2- i ^ ^ . p —

l^+'l \£a W My-.l2^
. A,

But
M.l2/'

v (AL. _ 4 - ' ^ y A>
y-2^Myl2 My-.l2^ ytiMyl3

k-\

Thus

— y —
y=i Myl

Aj Ak A,

M.l2'

M.I2 M.

= *k+

k

/ Ai \ At

-(A^-jt\)\A-;\
ik+1' My-'.IMylV(My-'l2-My|2V

(12)

Now (12) is formally the same as (9), with k replaced
by (k + 1), so that if (9) is valid for a given value of k,
it is also valid for the next higher value of k. But we
have already shown in equation (6) that (9) is valid for
the case k = 2, hence (9) is valid for all k such that
2 < k < n, and consequently (10) and (11) are also
valid in this range.
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Book Review
Semi-Groups of Operators and Approximation, by Paul L.

Butzer and Hubert Berens, 1967; 318 pages. (Springer-
Verlag,S14.)

This book is concerned with the mathematical aspects of
semi-group theory and in particular those aspects which are
connected in some way or other with approximation. This
theory is of significance in our understanding of the underlying
theory of such topics as classical approximation theory, the
solutions of partial differential equations and the theory of
singular integrals, but is somewhat far removed from the
everyday needs of the computing fraternity.

Chapter 1 gives a straightforward presentation of the
standard theory of semi-groups of operators. Chapter 2
presents basic approximation theorems for semi-group
operators with a study in particular of Dirichlet's problem for

the unit disc and Fourier's problem of the ring. Chapter 3
is devoted to the incorporation of approximation theorems
for semi-group operators into the theory of intermediate
spaces (intermediate between the initial Banach space and the
domain of definition of the powers of the infinitesimal
generator of the semi-group) and to deep generalisations in
the new setting. The last chapter outlines and discusses
applications of the previous general theory, including the
semi-group of left translations, the singular integrals of Abel-
Poisson for periodic functions and of Cauchy-Poisson for
functions on the real line, and the singular integral of Gauss-
Weierstrass on Euclidean n-space in connection with Sobolev
and Besov spaces. There is also a helpful appendix summaris-
ing the material in functional analysis that is assumed.
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