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Projection methods for solving sparse linear systems

By R. P. Tewarson*

Some methods of successive approximation for the solution of simultaneous linear equations are
discussed. The coefficient matrix A of the linear system is assumed to be sparse. It is shown
that savings in the computer storage and the computing time are possible, if there exists a subset
of the rows (columns) of A, consisting of only orthogonal rows (columns). Such savings are also
possible, if for some permutation matrices P and Q, PAQ has a particular structure, viz., singly
bordered block diagonal form. It is shown that the set of orthogonal rows (columns) of A, as
well as P and Q can be determined by using some results from graph theory (e.g., incidence
matrices, row and column graphs, points of attachment). Geometrical interpretations of the
methods and their inter-relatiohip are given.

(First received December 1967 and in revised form February 1968)

1. Introduction
Let us denote a system of simultaneous linear equations
by

Ax = b, (1.1)

where A is an n X n sparse matrix and both x and b
are n element column vectors. Evidently the exact
solution of (1.1) is x = A~lb. Let us consider the
following. Given an initial approximate solution x0

of (1.1), form a sequence of approximations

xk+1 = xk + Ckrk, k = 0,l,2,..., (1.2)

where Ck is some matrix, and

sk = x - xk,rk = b — Axk. (1.3)

From (1.2) and (1.3), we have

sk+l = (I-CkA)sk. (1.4)

If each / — CkA is a projector (Hermitian and idem-
potent), then (1.2) is a method of projection. It is
shown in (Householder, 1964, p. 98) that, for a given xk,
if we minimise the quantity |sfc+i|2, then (1.2) can be
written as

xk+ 1 — xk
vl r,'k'k

vTA ATV,
ATvk, (1.5)

where vk is an n element column vector.

2. The Kaczmarz method

In (1.5), if we take vk = et (the /th column of the
identity matrix), then we get

rk JT_
— xk T"

(2.1)

where r'k denotes the /th element of rk and A-, the /th
row of A. The scheme given by (2.1) is due to Kaczmarz
(1937).

It is easy to give a geometrical interpretation of the
Kaczmarz method (Bodewig, 1959, p. 186; Tomkins,
1956, p. 454) as follows. Let xk be a given approxi-
mation to x. The system (1.1) can also be written as

A,x = bh / = 1, 2, . . ., n, (2.2)

where b, is the /th component of b. Each of the above
n equations represents an w-1 dimensional hyperplane
in the n dimensional Euclidian space E". The solution
x is the common point of intersection of all such hyper-
planes. Let xk+l be the projection of xk on A,x = b,.
Since AT as well as xk+i — xk are both perpendicular
to the hyperplane, A,x = bh

therefore xk+i — xk = XAT.

The fact that xk+, lies on A,x = b-, gives

A,xk+X =b-,.

Premultiplying (2.3) by A,, we have

A-,xk+x - A,xk = XAiAT.

Using (2.4) and the fact that A,A] = |/f,|2, we get

b-, — A,xk r'k

(2.3)

(2.4)

A = U'

which, on substitution in (2.3), yields (2.1). It is evident
that xk+ [ is closer to x than xk; thus the convergence is
assured.

3. Structure of A and the Kaczmarz method
If the matrix A is sparse, then it is usually possible to

find a permutation matrix P, such that

PA = (3.1)

where R is m X n and N is (n — m) X n; furthermore,
the rows of R are orthogonal. Since finding all the
mutually orthogonal rows of A involves a large amount
of computational effort, we shall restrict ourselves to
the following: If any pair of rows of A do not have
any non-zero elements in the same column of A, then
we shall call them 'disjoint' (Tewarson, 1967b). Clearly,
disjoint rows are orthogonal. In sparse matrices,
almost all of the rows which are orthogonal, are usually
disjoint. Thus, we shall assume that all the rows of R
are disjoint. If a pair of rows is orthogonal, but not
disjoint, then one of them should be moved to N. An
algorithm for enumerating the disjoint rows of A (viz.,
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the determination of P) is given in (Tewarson, 1967a).
The algorithm makes use of the matrix B BT, where B
is the incidence matrix associated with A, and Boolean
addition is used in the matrix multiplication. An
alternative interpretation of the disjoint rows of A can
be given as follows. Consider the row graph of the
matrix A. The nodes are the rows of A and any two
nodes are said to be directly connected by an edge iff
the corresponding rows are not disjoint (Tewarson,
1967c). In view of the above-mentioned interpretation,
the rows of R are not connected directly to each other;
viz., there do not exist paths of unit length between any
two nodes associated with the rows of R. The graph
theoretic interpretation opens up the possibility of
using the vast literature of graph theory. In any case,
having determined P, we have from (1.1) and (3.1)

PA x = x = Pb =

which is equivalent to

Rx = c and Nx = d.

(say), (3.2)

(3.3)

Evidently, c is m X 1 and d is (n — m) x 1. Let the
z'th row of R be denoted by R,. Then the Kaczmarz
method can be stated as follows:

Theorem 3.1. Let D be a diagonal matrix with 1/|-R,-|;
/ = 1, 2, . . ., m as its diagonal elements. If the scheme
(2.1) is applied m times to the system (3.3), using the
rows of R, and xk as the initial approximation, then

= xk+RTD\c-Rxk). (3-4)

Proof. First, let us normalise the rows of R as follows.
From (3.3) we have DRx — De or Fx = g (where
F = DR and De = g). Evidently, F:FJ = 0, / ̂  j and
F-,FJ= 1. Now let

xk+j = xk + 2 (g, - F,xk)Fj. (3.5)

If we use the above equation in (2.1) with FJ+,, we have
xk+j+1 = xk+j + (gj+1 — Fj+ \xk+j)Fj+i-

Now, if we substitute the value of xk+j given by (3.5)
in the above equation, then in view of the fact that
Fj*+lFi = 0 i < j , we have

xk+J+ = xk+J

j+i

2 (gi

If xk and Fx are used in (2.1), we get

Thus, (3.5) holds for 7 = 1 and whenever it holds for j ,
it holds for/ + 1, hence

gi — F,xk)FT = xk+ FT(g — Fxk)

= xk+ RTDT(Dc - DRxk).

Since D = DT, the above equation is the same as (3.4),
which completes the proof of the theorem.

From the above theorem, we see that considerable
saving in the computing time is possible, if for the
orthogonal (disjoint) rows, instead of equation (2.1),
(3.4) is used. Of course, we have to use (2.1) for the
remaining rows. It is possible to extend theorem 3.1 to

include the case when A has disjoint submatrices.
Suppose there exist permutation matrices P and Q, such
that

i?<» 0 . . . 0
0 7?(2> . . . 0

0 0

(3.6)

where RU) is m-, x nh N
i0 is w x n,: i = 1, 2, . .., t, and

w = n — 2 rnr

The non-singularity of A implies that n, > m,. Let

The matrices P and Q can be determined by using
techniques similar to those given in (Mayoh, 1965); viz.,
modified to include rectangular matrices, as the RU)'s
in our case can be rectangular. The right-hand side of
(3.6) is called a singly bordered block diagonal matrix.
The attachment set defined in (Mayoh, 1965) is in the
set of rows in N. Having determined P and Q as above,
or otherwise, we can write (1.1) as

PAQQ-1 x = Pb = /'(say).

Since Q~l = QT and if we let y = QTx, then we have

PAQy=f. (3.7)

Let xk be an approximate solution of (3.7) and xk
l) be

a column vector consisting of the n,th through the
(«,+ 1 — l)th elements of xk. Let </>,- be the orthogonal
projection of xk on the column space of

(0, . . ., 0, Rio, 0,. . ., 0Y = t/,r(say).

Then

or cf,i = [0,. . ., 0, r,!,... Of, (3.8)

where -q, = R^T[RV)R(0T] - i/jW^O.

Now xk can be expressed as

xk = 2 <£, + 6, where Ufi = R(iW = 0, / = 1, 2 , . . . , t.
(3.9)

We can extend theorem 3.1 as follows:

Theorem 3.2. If rf-!"d denotes the value of 17,- after m-,
applications of (2.1) using the rows of R(i) and $.mi) the
corresponding value of </>,-, then

1 = 1
(3-10)

Proof. For i ¥=j, we see from (3.6) that C/,C//"=O;
and by construction <f>j lies in the column space of Uf;
therefore it follows that £/,<£, = 0. Thus in the
Kaczmarz method (2.1), when using the rows of JRW
(rows of U/) only $-, will change, but 6, <j>fs and
^W's (/ y£j) will remain the same. The reason for
^p) 's remaining the same is as follows. From (2.1) we
observe that if $ r t lies in the column space of Uf, then

a i s o yes j n t n e s a m e space, if any row of U-, is
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used. In view of the above facts and (3.9), we have

xk+n-w = jj<j>'r") + 0, which gives (3.10) on sub-

stituting the value of 6 from (3.9).
It should be noted that if m, = nt for some /, then

•n, = R<n'[RU>R(D']-iR(njtip = *<?. of course, in this
case, the matrix RW can be inverted to give immediately
the value of x%> in (3.7), thus decreasing the order of the
system by mt. The use of theorem 3.2 leads to signi-
ficant savings in storage and computing time, because
when using the Kaczmarz method with the row of A
belonging to the i?W's; viz., computing $mi)'s we only
use small submatrices and their rows. Let us define the
disjoint columns of A as the disjoint rows of AT. If
some of the columns of A are disjoint (and therefore
necessarily orthogonal), then we can also make use of
this fact in the Kaczmarz method as follows. Let Q be
a permutation matrix such that

=[L[ M2\'

where Lx is m X m and [L.T, L\\ ' = D, a diagonal
matrix Then from (11) we have L 2-lmatrix. Then from (1.1) we have

AQQTx = b or AQy = b.
Thus

M
= b. (3.11)

Premultiplying (3.11) by the matrix
•JT r r - iLx L2

.0 I \
we get

D

where V — L\MX + LTM2 and c is m x 1. Let

= L, and if the /th column of L is denoted by L(l),

and the /th diagonal element of D by aih then
an = WTL«>. Now, if V, denoted the /th row of
V, Cj and x'k+u the /th element of c and xk+i respectively,
and xk+i, the last n — in elements of xk+i; then we have
the following theorem:

Theorem 3.3. If the scheme (2.1) is applied to (3.12),
with xk as the initial approximation and using the first
m rows, then for / = 1, 2, . . ., m

-1 — xk+l ~l
"H T | ' | | L r /

(3.13)
Proof. The /th row of the coefficient matrix in (3.12)
is [eTaih V,]. Let xk+i be an approximation to (3.12),
using the /th row and xk+i in (2.1), we get

r; = a— [eTa,,, V,]xk+i

and M*,,, V,\* = a1,, + \V,\>.

Substituting the above in (2.1) gives (3.13). It is evident
that savings in time and storage will result if (3.13) is
used when any one of the first m rows of the matrix is

chosen for use in (2.1). Notice that the work involved
in getting (3.12) is done only once, while the rows of its
coefficient matrix will be used repeatedly.

In this section we have given three ways in which the
structure A can be used to decrease the computing time
(as well as storage) in the Kaczmarz method. In addi-
tion to the above methods, we could use some technique
for the acceleration of convergence of the Kaczmarz
method itself. Two such heuristic techniques are given
in (Dyer, 1967), where it is mentioned that the compu-
tational experiments showed significant improvement in
convergence. However, it is cautioned that the methods
may fail to yield a solution at all. Essentially, the two
techniques (which are non-linear relaxations) are:

xk+l — xk —
xT

kA
TA{xk+1 - xk)

- xk)\2 \xk+l — xk)

and
x*+2 = xlc+ 1

— xk)Txk)T(xk+l ~

(xk+ 2 — + Xk) (_Xk+ ! — Xk + 2) ~ xk+\)i

where xk, xk+i and xk+2 are three successive iterates
obtained from the Kaczmarz method.

4. Other methods

An interesting formula is derived in (Raytheon,
1966-67) by using a geometrical interpretation. We
shall now show that it can also be obtained from (1.5).
Any system of linear equations, e.g. (1.1) can be written
such that each element of the right-hand side vector is
unity, viz., bt = 1, / = 1, 2, . . ., n. Because, if b-, =̂ 0
or 1, we can divide the /th row of the system by b,\ on
the other hand, if b-t = 0, we can add another row to
the /th row to make b, ̂  0 and then divide to make it
unity. Therefore, there is no loss of generality if,
instead of (1.1), we consider the system

/X = 1, /' = 1,2,.. ., n. (4.1)

The following theorem shows how the formula given in
(Raytheon, 1966-67) can be obtained from (1.5):

Theorem 4.1. In (1.5), putting

*k = XJ\X\2> zk+\ = xk+i/\x\2 and ATvk = zk — A],

gives zk+\ — zk — (4.2)

Proof. Substituting xk = |x|2zfc, xk+i = \x\2zkJrX and
ATvk = zk — Aj in (1.5) and dividing the resulting
equation by \x\2, we have

(zk-AT). (4.3)
Vk -

If (zl- ^,)pj2 = 0. t h e n (4-3) will become (4.2); since
\x\

zj.{zk — A]) = (zj— Al)zk. We shall now prove that
(l A) 0 We ha

' - A;)x = 0. We have

zk = ATvk+Aj = (say). (4.4)
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Hence
{zT

k - A,)x = - A,)x
n

= 2 w<fc) — 1, using (4.1).

= 0, if 2 *<« = 1.

Therefore, if we choose zfc = ATww, where 2 H#> = 1,
; = t

then (4.3) becomes (4.2). In (Raytheon, 1966-67), it is
shown that if z0 is chosen on the hyperplane G passing
through the points AT, AT, . . ., AT

n, viz.,

/<= 1

n

then for all zk, 2 tvf' = 1, wW > 0, which completes

the proof of the theorem.
The geometrical interpretation of (4.2) is as follows:

From zk, subtract its projection on the vector zk — Aj
X

to give zk+l. The point z = r—^ is the foot of the

perpendicular from the origin on H. Thus zk+, is the
point, on the line through zk and AT, which is closest
to z. Thus convergence is assured. For the starting

solution z0 of (4.2), we can take wf^ = -.

Finally, we give a matrix formulation of Cimmino's
method (Cimmino, 1938). Its geometrical interpretation
is given in (Bodewig, 1959, p. 187). Let (1.1) be nor-
malised such that |^ , | = 1, for all / and let x0 be an
approximate solution. Let D be a diagonal matrix with
all positive diagonal elements w; and having a trace
equal to 2. Then xu the next approximation, is given by

Xl = x0 + (DA)Tr0. (4.5)

As is well known, (4.5) will converge if (DA)T has a
norm less than one.

But < 2 max m-,.max \A\
i i

< 2maxffi;, since \At\ = 1.

Hence (4.5) will converge if max mt <
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