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The numerical solution of the heat conduction equation subject
to separated boundary conditions

By M. R. Osborne*

The stability of the Crank Nicolson scheme for the numerical solution of the heat conduction
equation subject to separated boundary conditions is demonstrated. This result is extended to
separable equations with variable coefficients and to the heat conduction equation in cylindrical
geometry which has a singular coefficient. The solution of the difference approximation to the
heat conduction equation is shown to reflect accurately the pattern of behaviour of the differential
equation, and this result is applied to the phenomenon of 'persistent discretisation error' in the
solution to the difference equation.

(First received April 1968 and in revised form July 1968)

1. Introduction
This note is occasioned by two recent papers concerned
with the numerical solution by finite difference methods
of the heat conduction equation

7)2u
(l.i)

defined on S(0,l) = {(x,t); 0 < x < l , / > 0 } , and
subject to an appropriate initial condition, and to
separated boundary conditions of the form

anu(O,
~du

~du

, t)=At

0 1 „ I \ t \ A

(1.2)

In the first of these papers, Parker and Crank (1964)
describe a phenomenon (also described by Radok and
Merril (1960) and Phelps (1962)) which they call
'persistent discretisation error'. In the second paper,
Keast and Mitchell (1966) identify this phenomenon as
a weak case of an alleged serious instability.

It is the aim of this note to point out that the difference
equations described by Keast and Mitchell as only
'apparently stable' are in fact stable in the usual sense
(here only the Crank Nicolson formula will be con-
sidered), and that convergence as the mesh sizes are
reduced can be demonstrated after the manner of the
Lax equivalence theorem (Lax and Richtmyer (1956))
in any finite region R = {(x, t); 0 < x < 1,0 < t < tmax).
The stability questions are considered in Sections 2 and 3.
The approach given here can be generalised to separable
equations with variable coefficients, and this is described
in Section 4.

In our discussion of stability it is essential that tmax
be finite because solution growth like e*' is possible in
equation (1.1). Other authors (for example Varga
(1962), Gary (1966)) have attempted to relax this con-
dition in cases where the solution of the differential
equation is bounded as t ->- oo, and have adopted
definitions of stability related to that used by Keast and
Mitchell. Gary (his Theorem 4) claims that their con-
dition for stability is necessary for stability in his sense,
but an example will be given in Section 5 to show that

this is not so. In Keast and Mitchell (1966) there is an
apparent confusion between the spectral radius of a
matrix and the-concept of the spectrum of a family of
operators used by Godunov and Ryabenki (1964).
Keast and Mitchell allege a result not contained in the
latter reference.

The problems discussed by Parker and Crank are
characterised by discontinuous initial conditions. Keast
and Mitchell are correct in pointing out that persistent
discretisation error can occur with smooth initial con-
ditions, and it may be noted that discretisation error is
usually persistent. However, Parker and Crank do draw
attention to a significant phenomenon, for it is often the
case in the finite difference solution of equation (1.1)
subject to equation (1.2) that the error due to dis-
cretisation tends to zero as t tends to oo. The reason
for this is that a solution to equation (1.1) with/(x, t) = 0
satisfying the conditions (1.2) can be found in the form

u = 2Ct + A + Bx + Cx2 (1.3)

where A, B, and C are suitably chosen constants, and
this satisfies exactly the usual finite difference approxi-
mations to equations (1.1) and (1.2). This expression
permits the part of the solution due to the inhomogeneity
in the boundary conditions to be subtracted out, and in
many practical cases the remaining part of the solution
of both the differential equation and the difference
approximation tends to zero as t tends to oo. Often*
the absolute contribution of the discretisation error also
tends to zero as t tends to oo, so that high absolute
accuracy is obtained independent of the mesh size. This
result is only valid for large enough values of t, and
discretisation error is certainly a problem for small t.

2. Preliminary considerations
Let a finite difference grid be introduced on S(0, 1) in

the usual manner. Assuming that al2 and a22 are not

* An example that illustrates that this need not be the case is
the following. It is readily verified that u = sin /2(1 — x)xjt
satisfies

sin 12 fQ - x)x
x) x —j-^ - -t

The solution tends to zero as t -^ oo, and the right-hand side is
bounded in 5(0, 1). However, the second and higher derivatives
of u with respect to / are unbounded as t -> oo.
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zero, then
j = 0,l,2,..
a = At/Ax2.
v/7, / = 1, 2,
equation can be written

vi} = v((i—\)Ax, jAt), i=l,2,...,n,
.,p, pt < tmax, Ax = l/(« - 1), and
If Vj denotes the vector with components
. . , « , then the Crank Nicolson difference

- B)Mv,} (2.1)

where 8 is a positive constant >

" - 2 + 2 t f n A x 2
1 - 2 1

AT =
1-2

2 - 2 - 2 a , , Ax

(2.2)

and O|2 = a22 = 1 for simplicity. If a12 and/or a22

equals zero then it is necessary to delete the row and
column of (2.2) which contains an and/or a2, and to
substitute Ax = l/(w + 1) or 1/n as appropriate. If
a,2 = 0 then vu = v(iAx,jAt).

Equation (2.1) can be put in the form

= C(At)Vj (2.3)

where

C(At) = {I- o6M}-l{I + a{\ - 9)M} (2.4)

and /• takes account both of the inhomogeneous term
f(x, t) and the boundary conditions. Note that C
depends on At through its dependence on a, and also
(in practice) through a functional relationship that
ensures that Ax -»• 0 when At -*- 0.
Remark. The case At ->• 0, Ax = constant could be
considered. It is simpler than the more general case,
and convergence, if it can be proved, is to the solution
of the system of ordinary differential equations obtained
by finite difference approximation to equation (1.1) in
the x direction only. Here it is assumed that

Ax = O(At).

To define stability it is necessary to define the norms
used. Here we use the euclidean vector norm

| v | | D =

where Ax -* 0 as the dimension of v tends to oo.
subordinate matrix norm is defined by

max (xTATAx\ '/2

- Y^x-j •

(2.5)

The

(2.6)

The following Lemma is a consequence of this definition.

Lemma 2.1. Let the matrix A be symmetric, and let (i
be the eigenvalue of largest modulus of A. Then

= H (2.7)

(2.8)

It is convenient to refer to the eigenvalue of largest
modulus of an arbitrary square matrix A as the spectral
radius of A, and to denote this by p(A). If A is sym-
metric then Lemma 2.1 can be stated

if D be a diagonal matrix then

To measure solutions to the differential equation we use
the L2-norm

(r1 V'2
Nlc = {J«2^j (2-10)

(The norm subscripts stand for Continuous and Discrete.)
Let M(X) be any bounded function. Then | |M| | C is
bounded. Let u be the vector Hr=[w(x,), . . . M(XJ],
then ||«||p is also bounded. Further, with any vector v
such that \\v\\D is finite can be associated a function
v{x, A) such that, for x,_! < x < xi+ ,<

v(x, A) = vt + (x — x,)
Ax

Lemma 2.2

Proof. We have

(2.11)

(2.12)

Axn - l

A X 3 / M , + 1 -

6 V Ax

< 2Ax
7 = 1

(2.13)

which gives the desired result with K = y/2.

Definition 1. The family of operators C(At) is stable of
order a, if

\\C(Aty\\D<KiP« (2.14)

for / = 1, 2, ...,/> as A/-> 0, where AT, is a constant.

Remark. If a = 0 in (2.14), then the family of operators
C(At)', i = 1, 2, ...,/> is uniformly bounded as A? ->- 0.
In this case we speak of stability. In the above definition
we follow Strang (1960).

Definition 2. Let u be a solution to the differential
equation. The difference approximation is consistent
of order /?
if

pP\\ul+x - C(At)u, - { / - oBM}-*ft\\D

= jfi\\E,\\D<K2 (2.15)

where T̂2 is constant.

Theorem 2.1. If the difference approximation is stable
of order a and consistent of order )3 > a. + 1, then
D,(JC, A) converges to u in the L2-norm.

Proof. We have

so that, if e, = «,- — v,,

We have

(2.16)

C'£o

(2.18)

(2.9) (2.19)
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so that

Now

Osborne

/ = \,2,...,p. (2.20)

(i) WM is symmetric, whence fV1!2CfV~112 is sym-
metric, and

- v,(x,A)||c
\u(x, t,) - «,(*, A)||c

by Lemma 2.2, whence

""!X! \Mx,tl)-vl(x,X)\\c-*0

i=l,2,...,p,At

Note. This result requires that

\\u(x, t,) - u,(x, A) | | c -> 0, / = 1, 2,. . .,p

as At -»- 0. This is obviously true if u{x, t) is a solution
to the differential equation in the ordinary sense.

3. The stability question

A detailed verification of the stability of the difference
equation will now be given. We require certain pre-
liminary results.

Theorem 3.1. Let H{AtJbe such that

(i) H is similar to a symmetric matrix H*,
(ii) the matrix T of the similarity transformation

satisfies

\u,{x, A) — v-,{x, A)\\c Lemma 3.3. The spectral radius of C satisfies

<\\et\\D p(C)=l+O(A0 (3.5)

Remark. For this result the following properties of the
eigenproblem of M are required.

(i) The A,(M) are bounded above,
(ii) Let A](M) be the algebraically largest eigenvalue,

then Ax~2\x{M) —>K as Ax—>0 (see, for
example, Keller (1965)).

(iii) At most two eigenvalues can be positive, and
Ax~2Xn{M) is unbounded below as Ax->0
where \n(M) is the algebraically smallest eigen-
value.

0 (2.21)

(iii) p(H) < 1 + O(A0,

then H(At) is stable of order a.

Proof. We have

whence

H*> =

by Lemma 2.1. Thus

\\Hi\\D<e'" Kp«

where L is an upper bound for {p(H) —

(3.1)

(3.2)

(3.3)

and is
finite by assumption (iii). This completes the proof.

Lemma 3.1. (Keast and Mitchell (1967)). Let W be a
diagonal matrix with positive elements such that WH is
symmetric then Wil2HW~il2 is symmetric.

Corollary. Let P(H) be a rational matrix function of
H, then WXI2P(H)W-"2 is symmetric.

Lemma 3.2. Let

1/2

1/2 J

(3.4)

Proof. The eigenvalues of C are given by

then

(3.6)

The choice 6 > 1/2 ensures that |An(C)| < 1 independent
of 6. The properties of the eigenproblem of M sum-
marised above show that At can be chosen small enough
to ensure that 1 — a^A,(M) is positive independent of
Ax, and in this case all the eigenvalues of C lie on the

branch of the curve y = ^ to the left of

x — 1/6. On this branch y decreases monotonically as
x -> — co. Thus we have either

P(C) < 1 (3.7)

or p(C)= |A,(C)| (3.8)

so that the desired result follows as o-0A,(M) = O(At).

Theorem 3.2. The difference scheme defined by equa-
tions (2.3) and (2.4) is stable.

Proof. This is a consequence of Theorem 3.1 and
Lemmas 3.1 to 3.3 which show that stability of order
zero obtains (that is the difference approximation is
stable in the usual sense).

Note. The Crank Nicolson formula is clearly consistent
of order j8 = 3 for sufficiently smooth initial and
boundary conditions so that Theorem 2.1 provides a
convergence result. Its scope includes all the cases
called unstable by Keast and Mitchell.

4. A more general differential equation
The results of the previous section extend readily to

the more general equation defined on 5(0, 1)

+ f(x, t) (4.1)

subject to an appropriate initial condition and the
separated boundary conditions (1.2). It is assumed
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that G > £(/), r)(x) > 0 for some finite G and all x, t
in S(0, 1), and that <x(x) and /3(x) are bounded. It is
assumed that all functions are smooth enough for the
solution M to satisfy appropriate consistency conditions
in /?.

Tn this case the Crank Nicolson difference scheme
becomes

(4.2)

Heat conduction equation

From the corollary to Lemma 3.1 it follows that

C,(A/) = f]

where £; = £(/Af), N is a diagonal matrix with elements
y), and (assuming as before that al2 = a22

 = 1)
is given by

JV,- =

85

(4.9)

is similar to a symmetric matrix under transformation
by W1'2. Thus

Lemma 3.3 applies also in this case, and we see (using
equation (4.5)) that the difference equation is again
stable of order zero (i.e. stable).

1 -

Mx

a2Ax .2+tfft 1 + ^ f

where

and

M, = - 2 + Ax2^,

= - 2

Axa,

Let Z) be a diagonal matrix such that DM is symmetric.
An appropriate form for D is

D, = 1/2,

£>, =
1

1 -

It will be seen that

D, - » exp <j I ai
o

(4.4)

(4.5)

as Ax -* 0.

From equation (4.2) we have

v/+1 = C((A/)p, + {I - ae^i+lNM}-lf> (4.6)

where C,-(A/) is given by

» = 1 , 2 p - 1 .

Let

(4.7)

(4.8)

1 +
an_,Ax

(4.3)

Thus there is essentially nothing new in the case
when the coefficients a and B in the differential equation
are bounded. A more interesting example is the heat
conduction equation in cylindrical geometry. In this
case the differential equation is

7>u ()2M 1 "du

7>i:=l)x~2+x ^x'

M is the matrix (Albasiny (I960))

- 4 4
1/2 - 2 3/2

(4.11)

M = In

In- 4
- 2

2

2 n - 3

2/1-4

—2—2a

(4.12)

and an appropriate form for D is

D, = (Ax)2/2, D; = 4x,Ax, / = 2 , « - 1

.£>„ = 2 Ax — Ax2. (4.13)

We have W = D, so that

- 2)] (4.14)
giving stability of order 1/2 on our assumption that
Ax = O(A0- It is not difficult to show that the
difference approximation is consistent of order 2
(Albasiny (I960)), so that Theorem 2.1 again provides
a convergence theorem.

5. The eigenfunction expansions
It is readily verified by separation of variables that

equation (1.1) subject to homogeneous boundary con-
ditions and the initial condition w(x, 0) =/(x) has the
solution

t) = (5.1)
1 = 1
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86 Osborne

where the A; and <f>h i = 1 , 2 , . . . , are the eigenvalues
and eigenfunctions of the problem

(5.2)

= 0 (5.3)

and where

a, = \fix)4>,(x)dx/\ X<fi{x)dx (5.4)

in particular

u(x, (5.5)

as t -* co, where A, is the algebraically least of the
eigenvalues. Thus u -> + oo, ai<f>t(x), or 0 as / ->• oo,
depending on whether A, < 0, = 0, or > 0 respectively.

Note. In the case A! < 0 it is possible to talk of the
instability of the differential equation.

A corresponding expansion can be given for the
difference equation. Setting

Vn = (5.6)

then
v, = C'V0

where A(C) is the diagonal matrix formed by the eigen-
values of C. Setting

a* = r - ' v 0

equation (5.7) can be written

v, = £ afXj(CyKj(T)

where Kj(T) denotes they'th column of T.
Let

(5.8)

(5.9)

tn{g) =

then

where

g(x2) + ...
(5.10)

(5.11)

and Xj can be thought of as a function of x which inter-
polates the components of xy-

In this case it will be seen (using equation (3.5)) that
vt-> ± oo, a*KX(T), or 0 as i -»• oo depending on
whether A,(M) > 0, = 0, or < 0 respectively. It will
now be shown that as i -»• co, u(x, r,) and v; both either
diverge or tend to a finite limit or to zero together inde-
pendent of the mesh chosen (as the mesh is refined this
is a consequence of the convergence theorem). It is
required to show that A, < 0, = 0, > 0 => XX{M) > 0,
= 0, < 0 respectively, independent of Ax.

Remark. It is easy to show that A, = 0 implies that M
has a zero eigenvalue for in this case the solution to
equation (3.2) must have the form <f>{(x) = A + Bx,
and this satisfies the difference equations exactly.

Consider now the principal minors of fxl — M.
These form a Sturm sequence. Therefore the number
of changes in sign in this sequence for /J. = 0 gives the
number of positive eigenvalues of M. The sequence is

Px = 2 — 2au&x
P2 = 2(2 - 2auAx) - 2 = 2 — 4a,,Ax

/>„_,= 2 - 2 ( n -
Pn = 4a21Ax — (n — l)A;c2.

Using Ax = l/(« — 1), the conditions that M has no
positive eigenvalues are that

(i) 1 — o n > 0, and
(ii) alx - au - a2lan > 0 (5.13)

The striking feature of these conditions is that they are
independent of Ax. Now, because — Ax~2A,(Af) ->- A,
as Ax -> 0 (Keller (1965)), they apply also to the
differential equation eigenvalue problem (5.2), (5.3),
and the stated result follows from this.

Remarks
(i) I am indebted to Dr. P. Keast for pointing out that
a result equivalent to (5.13) is given for the difference
approximation in Keast and Mitchell (1967), and for
the differential equation in Copson and Keast (1966).
Keast and Mitchell use these results to discuss the
stability (in their terminology) of both systems. Although
their results are similar to those obtained here, the
emphasis is somewhat different. The above derivation
of equation (5.13) is more direct.
(ii) The result on the equivalent behaviour of the
difference approximation and the differential equation
cannot be expected to hold for the more general equa-
tion (4.1). In this case the equivalence need only obtain
as Ax -» 0, so that finite difference computations with
finite Ax could produce misleading results. Campbell
and Keast (1968) have given formulae generalising
equation (5.13) in this case.

For the heat conduction equation it is unlikely that
A, < 0 in practice. The examples of Parker and Crank
correspond to the case A, = 0 so that </>i(x) = A + Bx
=> X](x), and a* is obtained by evaluating the integrals
defining at (equation (5.4)) using the trapezoidal rule.
If / is sufficiently smooth, or if / has only jump dis-
continuities and these occur at mesh points, then the
persistent discretisation error is O(Ax2). However, if/
has a discontinuity at a non-mesh point then the per-
sistent discretisation error is 0(Ax).

It can be expected that the requirement for the dis-
continuity to be at a mesh point could be difficult to
satisfy unless formulae permitting the use of graded
meshes in the x direction are available. Appropriate
formulae have been derived by Dr. R. S. Anderssen and
the author and will be the subject of a future paper.

It may be noted that we have shown that for the heat
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conduction equation subject to homogeneous boundary In this case p(C) = 1 independent of A/, in contradiction
conditions such that A] = 0. of the stated necessary condition of Gary (1966).

(i) the solution is bounded as t -»• oo, and 6. Acknowledgement
(ii) the solution is approached for all t by the solution In preparing this paper the author was greatly helped

of the Crank Nicolson scheme as A/-*-0(=> Ax-^0). by a series of discussions with Dr. R. S. Anderssen.
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