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Numerical studies of prototype cavity flow problems'

By Donald Greenspanf

A new digital computer method is developed for the Navier-Stokes equations. Finite differences,
smoothing and a special boundary technique are fundamental. The method converges in practice
for all Reynolds numbers. Examples illustrate both primary and secondary vortices and show
the development of selected double-spiral equivorticity curves as the Reynolds number becomes
infinite. As a special case, the method applies easily to biharmonic problems.

(Received August 1968)

1. Introduction
The flow of a gas or of a liquid in a closed cavity has
long been of interest in applied science (see, e.g., refer-
ences [1, 2, 4, 7-12, 14] and the additional references
contained therein). In this papsr we will apply the
power of the high speed digital computer to study
prototype, steady state, two dimensional problems for
such flows. The numerical methods to be developed
will be finite difference methods and will be described
in sufficient generality so as to be applicable to nonlinear
coupled systems similar in structure to the Navier-
Stokes equations.

2. The eddy problem in a rectangle
The class of problems to be studied, called eddy

problems in a rectangle, can be formulated as follows.
For d > 0, let the points (0, 0), (1, 0), (1, d) and (0, d)
be denoted by A, B, C and D, respectively (see Fig. 1).
Let S be the rectangle whose vertices are A, B, C, D and
denote its interior by R. On R the equations of motion
to be satisfied are the Navier-Stokes equations, that is

A</r = - a, (2.1)

Ao> + 0t ( ^ - — - ^ - - ) = 0, (2.2)
Vdx 1>y 7)y 7)x / v '

where 0 is the stream function, a> is the vorticity and Si
is the Reynolds number. On 5 the boundary conditions
to be satisfied are
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The analytical problem is defined on R -\- S by
(2.1)-(2.6) and is shown diagrammatically in Fig. ] .

In general, boundary value problem (2.1)—(2.6) cannot
be solved by means of existing analytical techniques.

Physical solutions have been produced in the laboratory
by Pan and Acrivos (1967), while numerical methods
which 'converge', but only for small Si, have been
developed by Burggraf (1966) and Runchal, Spalding
and Wolfshtein (1968). A numerical method which con-
verges for all Si, but which has been run only for rela-
tively large values of the grid size, has been developed
by the writer (see Greenspan, 1968).

We shall describe next a modified, somewhat faster
form of the latter method and apply it to a selection of
difficult problems which are of wide interest. Among
our major objectives will be the construction of secondary
vortices and the study of vorticity for large Reynolds
number.

D{0, d)

0 = 0

A(0,0)

3. The general numerical method

B(\,0)

For a fixed positive integer n, set h = - . Assume, for
n

simplicity, that d is an integral multiple of h. (If d is
* Funds for the computations described in this paper were made available by the Research Committee of the Graduate School
of the University of Wisconsin.
t University of Wisconsin, Computer Sciences Dept., 1210 West Dayton St., Madison, Wisconsin 53706, U.S.A.
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Cavity flow problems 89

not an integral multiple of A, the method is easily modi-
fied as shown in Greenspan, 1968.) Starting at (0, 0)
with grid size A, construct and number in the usual way
the set of interior grid points Rh and the set of boundary
grid points Sh.

For given tolerances e, and e2, we will show first how
to construct on Rh a sequence of discrete stream functions

0C), 0(0, 0(2), . . . (3.1)

and on Rh + Sh a sequence of discrete vorticity functions

o/°), co(O, a/2), . . . (3.2)

such that for some integer k both the following are valid:

(3.3)

'/, (3.4)

Initially, set

j, on

0(0) = C,, on Rh

> = C2, on Rh + Sh,

(3.5)

(3.6)

where C{ and C2 are constants.
To produce the second iterate 0(O of sequence (3.1)

proceed as follows. At each point of Rh of the form
(A, ih), i = 2, . . . , « — 2, approximate (2.3) by

0(A, ih) =
0(2//, iA

(3.7)

At each point of Rh of the form (ih, A), / = 1, 2 , . . . , « — 1,
approximate (2.4) by

»A, 2h)
(3.8)

At each point of Rh of the form (1 — A, ih), i = 2,3,. . .,
n — 2, approximate (2.5) by

0(1 - A, /A) =
0(1 - 2A, ih)

(3.9)

At each point of Rh of the form (ih, 1 — A), i = 1 ,2 , . . . ,
« — 1, approximate (2.6) by

2A)
(3.10)

And at each remaining point of Rh write down the
difference analogue

- 40(x, y) h,y) A)
- A) = -

- A, j>)

) (3.11)

of (2.1). Solve the linear algebraic system generated by
(3.7)—(3.11) by the generalised Newton's method
(Greenspan, 1968) with over-relaxation factor r,^ and
denote this solution by 0(1). Note that for linear
systems the generalised Newton's method reduces to
S.O.R. Then, on Rh, 0(O is defined by the smoothing
formula

0(0 = p0(O) < p < l. (3.12)

To produce the second iterate o>(0 of sequence (3.2)
proceed as follows. At each point of Sh of the form
(/A,0), i = 0, \,2,...,n, set

cD(O(/A, 0) = -
20("(//i, A)

T2 ' (3.13)

at each point of Sh of the form (0, ih), i = 1, 2 , . . . ,« — 1,
set

(3.14)

ateach point of Sh of the form (1, ih), i = 1,2,..., n — 1,
set

, ih) = -
- h, ih)

(3.15)

and at each point of Sh of the form (ih, 1), / = 0, 1, 2 , . . . ,n
set

<•>(,/,, O - j } -
Note that (3.13)-(3.16) are derived from (2.1).

Next, at each point (x, y) in Rh set

(3.6)

and approximate (2.2), appropriately, by

(—4 — ^ } u>(x, y) + u>(x + h, y)

+ w(x, y — h) = 0; if a > 0, j8 > 0,

if a > 0, /S < 0,+ w(x, y — A) =

+ w(x, y+h)

• — /*, y)

(3.17)

+ 6, v)

(3.18)

- A, ^)

if a<0,

(3.19)

+ co(x, y + h) + co(x - A,

^Y) ^(x,y-h) = 0; if < 0, p < 0.

(3.20)

Solve the linear algebraic system generated by (3.17)—
(3.20) by the generalised Newton's method with over-
relaxation factor ra and denote the solution by dJ(1).
Finally, on all of Rh + Sh define o/o by the smoothing
formula

a / O = ^ 0 ) + ( i _ / x ) t D ( O j 0 < / x < l .

Proceed next to determine 0(2) on Rh from a / 0 and
0(0 in the same fashion as 0(0 was determined from
a/°) and 0(°>. Then construct OJ(2) on Rh + Sh from OJ(I)

and 0(2) in the same fashion as o>(o was determined from
OJ(0) and 0(1). In the indicated fashion, construct the
sequences (3.1) and (3.2). Terminate the computation
when (3.3) and (3.4) are valid.
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90 Greenspan

Finally, when i/r(W and a»(W are verified to be solutions
of the difference analogues of (2.1) and (2.2), they are
taken to be the numerical approximations of <p(x, y) and
a>(x, y), respectively.

4. Examples
Consider first the boundary value problem defined by

(2.1)-(2.6) with d= \. This problem was solved on the
CDC 3600 for & = 200 with h = ^, ex = 1, e2 = lO"4,
p = Q\, fi, = 0-7, r^ = 1-8, r w = 1-0, Ct = C2 = 0,
and also for ^ = 500, 2,000 and 15,000 with the same
parameter values except for e2 = 10~3. Convergence
was achieved for S% = 200 in 14 minutes with 341 outer

iterations, for ^ = 500 in 11 minutes with 96 outer
iterations, for 8#. = 2,000 in 4 minutes with 80 outer
iterations, and for 8% = 15,000 in 3^ minutes with 40
outer iterations. The resulting stream curves exhibited
only primary vortices and are shown in Fig. 2. The
resulting equivorticity curves exhibited the double spiral
development shown in Greenspan (1968) and are given
in Fig. 3.

With an aim toward producing secondary vortices and
toward studying vorticity for large Reynolds numbers,
boundary value problems (2.1)-(2.6) were considered
again with d = 1. The problem was solved for 3% = 50,
10,000 and 100,000 with h = -h- For 01 = 50 the
remaining input parameters were chosen to be ex = 10~4,

F =200 R= 500

R = 2000 R =15000

Fig. 2. Typical streamlines for h = 1/20
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Cavity flow problems 91

e2 = 10-3, p = 0-03, /x = 0-90, r ^ = l - 8 , r m = l - 8 ,
Cj = C2 = 0. Convergence was achieved in 60 minutes
with 100 outer iterations. The resulting flow with the
secondary vortices is shown in Fig. 4. For ^ = 10,000
the remaining input parameters were chosen to be
e, = 0-004, e2 = 0-03, p = 003, /*, = 0-95, r* = 1-8,
rw = 1, C, = C2 = 0. After 183 outer iterations, /x was
changed to 0-85. Convergence was achieved in 260
minutes with a total of 226 outer iterations. The
resulting flow with a single secondary vortex is shown in
Fig. 5. For M — 100,000, the remaining input para-
meters were chosen to be e^ — 10~4, e2 = 0-005,
p = 0-03, ^ = 0-95, r * = l - 8 , rtt = 1, but ^0> and
w(o) w e r e taken to be the 57th outer iterates of the run

for (% = 10,000. Convergence was achieved in 135
minutes with 386 outer iterations. The flow is shown in
Fig. 6 and contains no secondary vortices. The equi-
vorticity curve to = 1 • 630, with its double-spiral, space
filling characteristics is shown in Fig. 7. Numerical
evidence of Batchelor's result that the vorticity in a large
subregion of R converges to a constant as R -> 00 is
exhibited in Fig. 7 by setting crosses on those points at
which the vorticity is between 1 • 6 and 1 • 7.

Finally, consider boundary value problems (2.1)-(2.6)
with d = 2 and R = 10. This problem was solved with
* = -A, «i = 10-4, e 2 =10 - 3 , p = 005, ^ = 0-90,
r^ = 1 • 8, rm = 1 • 80, C{= C2 = 0. Convergence was
achieved in 32 minutes with 102 outer iterations. The

R= 200 R =500

R --- 2000 R =

Fig. 3. Selected equivorticity curves for h = 1/20
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92 Greenspan

resulting flow, with its two primary and two secondary
vortices, is shown in Fig. 8.

5. Remarks
From the many examples run in addition to those

described in Section 4, the following observations and
heuristic conclusions resulted. Divergence or excep-
tionally slow convergence usually followed if any one
of the following choices were made: 0-4 < p < 1,
0 < /J. < 0-6, r% <\, ra < 1. The choice p = n = 0
yields convergence only for large grid sizes and small
Reynolds numbers. The choice r^= 1-8 was con-

sistently good. For grid sizes larger than or equal to -̂ o,
sequence (3.1) converged so much faster than (3.2) that
very little attention had to be directed toward the choice
of ej, but for grids smaller than -^ this was not the case
and attention had to be directed to the choices of both
€X and e2. Deletion of all or even of some of the special
formulas (3.7)-(3.10) and substitution with (3.11)
always led to divergence for large Reynolds numbers
( ^ ~ 10,000), but often did yield secondary vortices for
h = io for small Reynolds numbers (01 ~ 50). The
difference equations for if!*-® and o/w were always satis-
tied to much smaller tolerances than those imposed in
(3.3) and (3.4), respectively.

Several possible modifications of the method of this
paper which should be explored if one wishes to speed
up the convergence include allowing some or all of

Fig. 4. Streamlines for Reynolds number 50 with
h = 1/40

.000001 .00001
Fig. 5. Streamlines for Reynolds number 10,000 with

h = 1/40
Fig. 8. Streamlines for Reynolds number 10 with h = 1/40

for a 2 by 1 rectangular cavity
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Cavity flow problems 93

Fig. 6. Streamlines for Reynolds number 100,000 with
h = 1/40

p, ij,, r^ and ra to be variable (Carre, 1961), using line
over relaxation (Varga, 1962), and choosing tfim and a>(0>
in a more judicious manner than that prescribed in
(3.5M3.6).

Observe also that the method of Section 3 applies
directly to biharmonic problems (i.e. to the case 3% = 0)

Fig. 7. Equivorticity curves to = 1 • 630 for Reynolds number
100,000 and h = 1/40. At crossed points vorticity is between

1-6 and 1-7

and initial computations verify that it extends in a
natural way to free convection problems (Batchelor,
1954).

Finally, note that theoretical support for the method
of this paper is now beginning to appear for very special
cases—see references 3, 5, 13.
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