124

ALAM—Atlas Lisp Algebraic Manipulator®

By R. A. d’Invernot

ALAM is a system written in ATLAS LISP for carrying out algebraic manipulation. It has
been used extensively in General Relativity, where it appears both to be more efficient and to be
able to handle more complicated problems than other systems in this field.

(Received June 1968, revised December 1968)

1. Motivation and background

In the past decade a large number of computing systems
for carrying out algebraic manipulation have been con-
structed. The general trend has been towards increasing
the capability of the systems, thus allowing a whole
spectrum of algebraic problems to be processed. On
the other hand, it is clear that with respect to one
computer and one language, the more general the capa-
bility the less efficient the system is likely to be. The
interest of the author is the application of these systems
in General Relativity where a large number of algorith-
mic algebraic problems exist. The systems encountered
have a very definite limit on the complexity of the
calculation they can handle in terms of what is economi-
cally viable. ALAM was constructed to allow more
complicated problems to be processed, by restricting
the capability of the system to what happens in normal
calculations only, thus increasing its efficiency. ALAM
possesses some peculiar features, their final justification
being that the system appears to work more efficiently,
in performing the same task, than other systems encoun-
tered, and that ALAM can proceed with problems where
other systems cannot.

For the above reasons attention was turned to the
largest, fastest available computer, namely Atlas 1. The
most convenient (although not necessarily the most
efficient) way of representing algebraic structures is in
tree-structures or lists. LISP 1.5 is a language which
processes lists and has the advantages of being a very
powerful language allowing recursive functions to be
defined and possessing an automatic garbage collector.
Many algebraic systems have been written in LISP; they
seem in practice to be more efficient than systems
written in other languages. Thus it was decided that a
version of LISP under development for the Atlas 1
would be incorporated as a subset of ALAM. This
version of LISP did not possess the function COMPILE
which translates LISP functions into machine-code,
allowing programs to run very much faster,} and use less
store. For this reason, ALAM was written in LAP,
LISP’s two-pass assembler (i.e. essentially in machine-
code). Although ALAM can and has been written in
LISP proper, such machine-code subroutines are
probably more efficient than similar LISP functions
compiled. In this paper, the structure and distinctive
features of ALAM are introduced, and in Section 5
ALAM is compared with representative systems of the
two languages most used in this field (LISP 1.5 and

} claims of up to a factor of 100 have been made.

FORMAC). Section 6 contains definitions of some of
the terms used in this paper.

2. Basic algebraic structure

The structure is written in prefix or Polish notation
and stored in the machine as a set of atoms and lists. Its
recursive definition is as follows.

An algebraic expression is either the atom 0; or an
atomic symbol; or a list of two non-zero positive integers;
or a list, the first item of which is an operator and the
remaining items algebraic expressions.

More explicitly if Al, A2, etc. represent algebraic
expressions then the expressions are constructed from:

(i) Atoms, which may represent constants, variables
or arbitrary functions;
eg.C Y,Z B1, B2, ...

(ii) Plus and times, (+, *) which take an indefinite
number of arguments;
e.g. (+ Al A2 ... AN).

(iii) Minus, (—) which takes one argument;
e.g. (— Al.

(iv) Exponentiation, (**) which takes two arguments;
e.g. (** Al A2) which represents A142,

(v) Logarithm and exponentiation to base e, (LOG,
EXP) which take one argument;
e.g. (EXP Al).

(vi) Trigonometric, hyperbolic, inverse trigono-
metric and inverse hyperbolic functions which
take one argument;

e.g. (SIN Al).

(vii) Partial (or ordinary) derivative of an arbitrary
funtion (£, $ or 7 according to character code).
This has a list of arguments, the first being the
name of the function, and the rest being a list of
derivatives.

e.g. (£ A 12 3) might be 33A(x, y, 2)[3xdydz;
here 1, 2 and 3 refer to x, y and z respectively.

(viii) Numbers. Except for zero (0) all numbers are
either rationals, represented by a list of two non-
zero positive integers, or are algebraic numbers
constructed in combination with previously
mentioned structure.
eg. (12)isd; (** 21) (12))is v/2.

* This research has been sponsored in part by the AEROSPACE RESEARCH LABORATORIES through the EUROPEAN OFFICE OF AEROSPACE
RESEARCH, OAR, UNITED STATES AIR FORCE, under Contract AF 61(052)-877

t King’s College, London

¥202 YoJe\ g1 uo 1senb Aq Zi/9G€/12 L/2/Z L /e1one/|ulwoo/woo dno-olwepeoe//:sdiy woij pepeojumod

3. Basic algebraic functions

(i) Differentiation. The function DIFF differentiates
its first argument, an algebraic expression, with respect
to its second argument, an integer which has previously
been placed on the property list of the variable it labels,
with indicator VAR,

e.g. DIFF ((SIN A) 1) = (* (COS A) (£ A 1))

if A is a function of X say, which has 1 as its VAR.
Differentiation works faster by letting the operators
themselves differentiate their arguments, for example +
is a subroutine which differentiates its arguments. This
device avoids a long parent function with many con-
ditional branches.

(ii) Simplification. By simplifyingexpressionsin many
different ways, it was found, at least in this system, that
in large problems a high degree of efficiency can be
obtained if the process of simplification is broken down
into three stages:

(a) The function ZERM truncates expressions with
zeros in them. Zeros can arise in expressions
either via differentiation or because in many
problems subexpressions are zero. ZERM very
quickly eradicates such zeros, thus usually causing
a reduction in storage occupied by the expression,
and preventing unnecessary simplification of some
terms.

(b) The function EXPD expands the resulting ex-
pression using associativity and distributivity.
This, again quite quickly, reduces expressions to
the general form (+ A1 A2 ... AN) where Al is
either (* B1 B2...BM)or (— (* B1 B2...BM)).

(c) The function EDIT then simplifies this general
form by first of all simplifying the AI’s in a normal
manner (e.g. collecting up powers, multiplying
numbers together, etc.). The resulting expressions
are canonicalised in a fairly straightforward
manner. Canonicalisation is a time-consuming
process, and apart from reducing input expressions
to a unique form and canonicalising powers in the
AD’s, this is the only time it is used in ALAM; and
even here it consists only of ordering the remaining
BI’s in each AJ. The need for canonicalisation
arises in testing the equality of expressions like
(* AB)and (* B A). Finally the AI’s are collected
up according to the normal rules. Before collect-
ing up, the AI’s and in the above multiplication
simplification the BI’s, are written in a form to
facilitate their collection. Experience has shown
that a fully expanded answer is what is required
in most relativity problems (see ‘common factors’
and Section 5).

(iii) Output. The function PRT prints out its first
algebraic argument, on the output stream denoted by its
second argument, in a ‘mathematical format’. Although
this is time-consuming the end product is worth the extra
effort involved.

4. Distinctive features of ALAM

Some of the main differences between ALAM and
other existing systems are:

(i) Input—Output. Input is a relatively rare pro-

ALAM 125

cedure; a well-defined Polish notation has been found to
be unambiguous, while difficulties in this respect can
arise with FORTRAN-type expressions. Output on
the other hand is more frequent, and an attempt has
been made to output in a ‘mathematical notation’, with
standard indices, trigonometric and exponential forms,

e.g.
% = 2U3B, + (3/28) LOG (U)+ E— @6 +5 COS (4)
— COT (4)R-2ULP

This requires no transformation to a readable format
for the mathematician without computer training. On
the other hand large FORTRAN-type expressions are
not easily readable, and translation by hand into a
different notation is not only laborious but can introduce
errors.

(ii) Recursion avoided. When writing functions in
LISP it is natural to write recursive functions. In fact
in all functions where it was possible recursion has been
dropped in favour of cycling (this of course is not always.
possible, as for example in the definition of COPY).
This has proved to increase the overall efficiency con-
siderably; for example the transfer of information to
and from the push-down stack is bypassed; this could
otherwise quickly build up in a large problem. This
feature is related to the fact that in LISP proper PROG
generally allows one to define functions more efficiently
than COND does.

(iii) Simplification in three steps. Again it might be
more natural to write a main simplifying function with
branches covering all possible simplifications, but
functions can be made more efficient if their arguments
are of a very particular form, since less tests of the
arguments need to be made. The strategy of eradication
of zeros, and expansion into a general form allows one
to write functions with fewer branches in them.

(iv) Modification of list structure. All the main
functions act by modifying existing list structure rather
than by making modifications while copying existing list
structure (consing). This is considerably faster when
one realises that the majority of computing time is spent
in either modifying or copying list structures. On Atlas,
each modification takes only 1 or 2 machine instructions.
whereas ‘consing’ takes 15 or 16, and also makes more
use of the push-down stack. The disadvantage of this
approach, which only shows itself in very large com-
putations, is that each expression must be stored uniquely
(without common use of sublists). Both (i) and (iv)
considerably reduce the frequency of garbage collections,
a redundant and time-consuming, though necessary,
process.

(V) Restricted capability. To save run-time some
primitive simplifications have been adequate in many
problems. For example no simplification of (SIN Al)
is attempted because nowhere in ALAM does the system
construct such a quantity which could be simplified, as
for example (SIN 0) could. Of course the programmer
could construct such a quantity as (SIN 0), but if he did
he would need to modify ALAM to simplify it fully.
Although, for efficiency in most probems, the capability
is restricted, it may be extended either by the device
mentioned in (vi) or by changing functions or defining
new ones. Apart from the substitution device, other

¥202 YoJe\ g1 uo 1senb Aq Zi/9G€/12 L/2/Z L /e1one/|ulwoo/woo dno-olwepeoe//:sdiy woij pepeojumod

126 d’Inverno

alterations suffer from the disadvantage of requiring the
user to have a somwhat detailed knowledge of the
system. On the other hand it has been found that
extensions are usually straightforward. For example
suppose one wished to express a result involving (SIN A)
and (COS A) in terms of SIN, COS and powers of SIN
only. One could use the substitution device to replace
powers of COS by their corresponding SIN expressions.
Alternatively one could quite easily write a function
which when simplifying ** would check for powers of
COS and make the appropriate simplifications.

(vi) Common factors. In most algebraic manipu-
lation programs, a large amount of time is spent in
trying to obtain common factors. The problem of
common factors is not well-defined, and in most appli-
cations it has been found that either the answer is not
the one desired, or that the added complexity arising from
the attempt precludes any answer at all. The simple
expedient of substituting an arbitrary function for
common factor expressions and resubstituting only when
printing out, has so far proved adequate in applications.
This same device can be used to abbreviate constantly
recurring long expressions in answers, and in sub-
stituting one expression for another.

(vii) Numbers. Except for zero, all numbers in
ALAM are rational, or algebraic numbers defined in
terms of rationals. This ensures exact treatment and
unambiguous output, unlike some systems which trans-
late all numbers into floating-point form. In problems
so far encountered, floating-point numbers have not
been required. All arithmetic in ALAM is executed by
special functions which take advantage of knowing the
specific form of their arguments and which also avoid
the need for numeric atoms in intermediary results.
This avoids a lot of the redundancy in LISP arithmetic.

(viii) Use of magnetic tape. Atlas LISP possesses the
function SYSTEM which defines the present system in
the computer as a new compiler by outputting it onto
magnetic tape. This allows one both to modify ALAM
permanently when one wishes and to keep a large
number of expressions for future use. ALAM also
possesses functions which can output and inputindividual
expressions to and from magnetic tape when required.

(ix) Overall economy of machine instructions. Savings
which may seem small in a function can achieve signifi-
cance when the function is entered over and over again
during the course of simplification. Attempts have been
made to optimise the efficiency of frequently used
functions. Three examples are given:

(a) If a function of one argument is entered via the
push-down stack, then it takes 28 machine instruc-
tions to push the stack down and pop it up again.
For a larger number of arguments and for use of
so-called function variables (variables used in sub-
routines for intermediary results which must be
preserved on the push-down stack) the situation is
worse. In some functions, for example numerical
functions, it is possible to program so that the
push-down stack is not used. In others, the stack
need only be used for certain arguments. Thus
writing functions in such a way that they use the
stack only when it is unavoidable, can save the use
of a large number of machine instructions.

(b) Savings in machine instructions may be achieved
by writing important closed subroutines as open
subroutines. This avoids possible unnecessary
settings of index registers and the use of the ‘call’
subroutine. For example the construction of a
list of two items could involve the execution of 8
machine instructions when programmed as an open
subroutine, as opposed to between 30 and 74
instructions, when programmed as a closed
subroutine.

(c) The atoms which represent the basic operators
+, —, ¥, ** etc., are made to occupy consecutive
locations in store. This enables the basic tests on
algebraic expressions to be made very efficiently
by means of a jump table.

5. Applications and comparisons

So far ALAM has been applied extensively to problems
in General Relativity, in the construction of tensors,
the transformation of expressions, and the expansion of
polynomials in power series with algebraic coefficients.
Increased efficiency can be achieved in the processing of
polynomials by treating them as lists. In all applications
the common factor device has proved either adequate or
unnecessary. An example of ALAM’s application is
the function GEOM, which takes a list of ten algebraic
expressions—the components of the metric tensor g,
(a symmetric 4 X 4 matrix of expressions), produces
the quantities g (determinant of g,;), g (inverse matrix),
I'#. (40 combinations of g,,’s and their first derivatives),
R, (20 combinations of g,,’s and their first and second
derivatives), R,,, R and T, (all combinations of g,, and
R,;.4). Other related tensors or tetrad components can
be obtained in a straightforward manner.

The source program in ALAM for the application of
GEOM to the so-called B.V.M. metric consists of
declaration of the variable labelling, delarations of the
dependent variables of the arbitrary functions, and finally
GEOM and its argument, thus:

DEFLIST ((T 0) (R 1) (E 2) (P 3)) VAR)

DEFLIST ((B (012)) (G (012)) (U (012)
(V (01 2))) DEP)

GEOM ((

(+CFVEXP*CDB)**R(—(11))
(—CEXPFQCHG)F*UQR)(**R2EDY)

(EXP B)

FUEXP(*2DG) (**R2D)

0000

(—CEXP*2DG) **RQ2D))

0

(—(*EXP(—(*(21) Q) (**(SINE) (21))
**R)

Comparisons with a system written in FORMAC and
one in LISP 1.5 for this metric are:

(i) Clemens/Matzner using FORMAC, (IBM 7094)
about 30 minutes.

Example of the output for the expression I'l is:

¥202 YoJe\ g1 uo 1senb Aq Zi/9G€/12 L/2/Z L /e1one/|ulwoo/woo dno-olwepeoe//:sdiy woij pepeojumod

ALAM 127

114 (i) Atomic symbol. A string of no more than thirty
U*((U*R*FMCEXP(G*2)*2+ U*R**2*FMCEXP numerals, letters and other legal characters the first of
(G*Z)*FMCDIF(G (R 1))*2+R* *)*FMCEXP which must not be a number. In some LISP systems -+

and — are considered to be numbers and may neither

(G*2)*FMCDIF(U,(R,1)))*2**(—1)—FMCEXP represent atoms in themselves nor commence an atomic

(B*2)*FMCDIF(B,(E,1))) * FMCEXP(B*(—2))+ symbol.
(U*R**2*FMCEXP(G*2)*FMCDIF(U,(R,1))*(—2) (ii) Numeric symbol or number. These may be
+U**2*R*FMCEXP(G*2)*¥(—2)+U**2*R **2* floating-point, fixed-point or octal numbers, represented
FMCEXP(G*2)*FMCDIF(G,(R,1))*(—2)—V*R** Pl fa}ﬂ};fstandari\ Y it _ fa
ok * R kR £\ % anonical form. rule for writing expressions o
(—2)*FMCEXP(B *2) +\; *R (. D *FMCEXE(B* 2 given class in a unique way.
FMCDIF(B,(R,1))*2+R**(—1)*FMCEXP(B*2) Consing. Consing two expressions together
FMCDIF(V,(R,1)))*FMCEXP(B*(—2))*2**(—1)$ involves placing the pointers to the

expressions in the half-words of a
word, thus using new memory.
Modification involves overwriting

In the attempt to extract common factors a number of
cancellations have been missed.

(ll) Fletcher’s GRAD'ASSISTANT, (IBM 7090) un- existing information with new in-
able to complete the calculation because of lack of store. formation.
By arranging that expressions be eliminated when they Garbage collector. Reclaims that part of storage which
have been printed out, where possible, it was possible to in some definite sense is no longer in
obtain a result in about 17 minutes. The same expres- use, thus allowing some programs
sion is: which would otherwise run out of
(GAM+——114)= —0-5EO *V(T,R,E) *R storage to continue.
%(_2) 4+ (0-SEO(DVO010)(T,R,E)+(DB010) List. An ordered set, each of whose

* *R *¥%(_1) — 0O- * elements may in turn be a list, or
(T.R,E) *V(T, R, E)) * R **(~1) = 0-SEO * EXP (equivalently) a vector each of whose

(—=2*B(T, R, E)) * EXP 2 * G(T, R, E)) * U(T, R, E) elements may itself be a vector. In

*MOUO10)(T,R,E)*R**2—(DB001) LISP a list of the elements Al A2 A3

(T, R,E) * U(T, R, E)) could be written (A1 A2 A3).

Pointer. A way of referring to the address or
location of information in memory.

(iii) ALAM, (Atlas 1). Since Atlas is a time-shared Polish notation. Polish notation or prefix notation

Here R has been considered to be the common factor.

machine, execution time depends on the amount of store consists of writing an expression with
requested (maximum store is approximately 200 blocks of the operator first followed by its
512 48-bit words). For 100 blocks of store, execution arguments, as opposed to infix no-
time was about 4 minutes, a large amount of which was tation where the operator is written
spent in printing in ‘mathematical format’ and in between the arguments. For example:

executing garbage collections, which take a very long

time in Atlas LISP. Because of this the efficiency of NORMAL MATHEMATICAL . ‘:“x :OUSH

ALAM becomes more marked in more complicated ABC + D A*B*C+ D (+(*4BC) D)
problems. The same expression is: Property list. The list associated with an atomic
GAM/, = VB,R~1 + (1/2)V,R~! — UB, symbol comprising properties of the

atom, such as its print name. The
elements of a property list are
indicators, usually followed by their

— (1/2)UU,E26-2BR2

6. Appendix of definitions respective property definitions.

Algorithm. An unambiguous procedure for a Push-down list. The last-in-first-out memory area for
mechanisable solution of a problem. saving partial results of recursive

Atom. There are two types: functions.

References

SaMMET, J. E. (1966). Survey of the use of computers for doing non-numerical mathematics, IBM Sys. Develop. Div., Tech.
Rep. No. TROO. 1428.

Comm. ACM (1966), Vol. 9, No. 8.

CLEMENS, R. W., and MATZNER, R. A. (1967). A system for symbolic computation of the Riemann tensor, University of Mary-
land, Tech. Rep. No. 635.

THORNE, K. S., and ZIMMERMAN, B. A. (1967). ALBERT—a package of four computer programs for calculating general relati-
vistic curvature tensors and equations of motion, Joint Tech. Rep., Cal. Tech.

FLETCHER, J. G. (1965). GRAD-ASSISTANT—a program for symbolic algebraic manipulation and differentiation, University
of California, Lawrence Radiation Laboratory, Livermore, UCRL-14624-T.

MARTIN, W. A. (1967). Symbolic Mathematical Laboratory, Project MAC, M.L.T., MAC-TR-36 (Thesis).

RusseLL, D. B. (1966). ATLAS LISP, Atlas Computer Laboratory, Chilton, Didcot, Berkshire.

Bonbi, H., VAN DER BURG, M. G. J., and MEeTzNER, A. W. K. (1962). Gravitational waves in general relativity, VII. Waves
from axi-symmetric isolated systems, Proc. Roy. Soc. A, Vol. 269, p. 21.

MCcCARTHY, J., ABRAHAMS, P. W., EDWARDS, D. J., HART, T. P., and LeviN, M. 1. (1962). LISP 1.5 Programmer’s Manual.
Cambridge, Mass.: The M.LI.T. Press.

¥202 YoJe\ g1 uo 1senb Aq Zi/9G€/12 L/2/Z L /e1one/|ulwoo/woo dno-olwepeoe//:sdiy woij pepeojumod

