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Methods of profile optimisation by iterative analogue computation

By N. W. Bellamy and M. J. West*

This paper describes two distinct methods of optimising the profile of a cantilever beam to achieve
minimum deflection at its free end. Both methods use iterative analogue computation techniques
and are suitable for use on present day semi-hybrid computers. Several arguments are given to
show the advantage of applying Pontryagin’s maximum principle over the usual hill-climbing

methods.

(Received March 1968, revised October 1968)

For some years, analogue iterative techniques have been
extensively used in the design of homogeneous structural
shapes. The majority of these design problems involve
the solution of high order differential equations with
defined boundary values (Wilby and Bellamy, 1962;
Paul, 1965). Recently, however, the availability of
hybrid computers has led to the development of more
advanced iterative techniques opening the way to the
relatively difficult problems of optimisation.

Attention has been focused for a long time on methods
of optimisation for use on digital computers. Axial
iteration techniques, the method of steepest descent, and
the methods given by Rosenbrock (1960), Fletcher and
Powell (1963), and Powell (1964) have been used for
hill climbing, according to their merit for a specific
problem solution. Of these only the axial iteration
technique is really suitable to iterative analogue com-
putation although all the other methods are feasible with
full hybrid machines.

A radically different method for optimisation intro-
duced by Pontryagin, Boltyanskii, Gamkrelidze and
Mischenko (1962) shows distinct advantages over
standard hill-climbing techniques, but its mathematical
complexity appears to be severely limiting its use. At
first sight, the simple-boundary value equations given by
Pontryagin’s method ideally match the iterative tech-
niques available on analogue machines. Unfortunately
the equations tend to have a number of non-linear terms
which emphasise the inaccuracies of analogue computing
elements.

One class of problems of general interest is the opti-
misation of a structural shape or profile to a given per-
formance index. This paper describes the solution of a
problem of this nature using iterative analogue tech-
niques. Both hill-climbing and Pontryagin methods are
used to determine the optimum profile of a cantilever
beam for that beam to undergo minimum deflection at
its free end.

Statement of the problem

Consider the cantilever beam shown in Fig. 1 and
Fig. 2. The beam has constant width a and density p
and is symmetrical about its central axis. It is required
to determine the profile of the beam for minimum end
deflection under its own weight with the maximum and
minimum height restrictions, #,; and h, respectively.
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Fig. 1. Beam parameters for Pontryagin’s method

d¢ / [ N

AT 2

=

T

4 % B

. l =

- e =

| Z ';

Fig. 2. Beam parameters for hill-climbing method

The beam deflects according to the equation

d2
M(x) = — Ezd—x{ 1)

ah?
where I= 5P )
M(x) is the bending moment at a point x along the beam,
E is Young’s Modulus and I is the second moment of

area.
If x is taken to increase from the wall to the free end

of the beam as in Fig. 1, then

1
M) = [ palh(@))(e — x)do )
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Profile optimisation 133

or, if x is taken to increase from the free end to the wall
as in Fig. 2, then

M) = Lla[h(¢)1<x — $)d¢ @)

where £ in each case indicates height of the beam as a
function of distance along the beam. Note that in either
case

d’M(x)

Hill climbing method

The deflection y(x) for a given beam profile can be
computed using standard analogue techniques by solving
equations (1) and (3) or equations (1) and (4) for the
given boundary conditions. Both deflection and slope
of the beam are zero at the wall, whilst bending moment

aMm
M, and y 2re zero at the free end of the beam. It is

therefore advantageous to compute along the beam from
its free end towards the wall (equation 4), since this
involves only the evaluation of a single boundary con-
dition, namely slope at the free end, in order to obtain
deflection of the free end for a given beam profile.
Computing in the other direction (equation 3) necessitates
solving for two boundary conditions before deflection
can be evaluated. After the development of the analogue
model of the beam, the problem resolves itself into the
generation and optimisation of parameters describing
the profile of the beam.

With the inherent high speed iterative operation of
analogue computers, rapid convergence of parameters
to their optimum values is possible without resort to
the more sophisticated hill-climbing methods. Further-
more, an investigator can observe the performance of
the iterative solution and make adjustments according
to his logic and intuition. Unfortunately two of the
well-known limitations of analogue computers, in-
accuracy and drift, can introduce errors and in some
cases prevent correct optimisation.

In order to control even simple axial multi-parameter
hill-climbing on an analogue computer, relatively com-
plex digital mode control facilities are required. Present
day analogue computers are usually equipped with a
complement of digital logic capable of performing this
control function. The authors had the use of a machine
of this type, a Solartron 247 system, linked to a compre-
hensive sequential program control unit (Bellamy and
Hulton, 1968). With this machine, control sequences of
the type given in this paper could be patched directly
without the need of a tedious logic interpretation.

Preliminary investigations into the problem showed
that the optimum profile of the beam would have three
distinct sections (Fig. 1). At the fixed and free ends the
maximum and minimum height restrictions would ensure
that the beam height at and near these points would be
hy and h, respectively. Between these two constant
height sections the profile would probably be a con-
tinuous function A(x), from h = h; to h = h,.

Describing the exact form of the function A(x) over
the mid-section of the beam in terms of parameters that
can be optimised is, of course, the root of the problem.
Of the methods of generating continuous functions on
analogue computers, piece-wise linear approximation is

C

usually the most satisfactory. In this case it is con-
venient to generate straight line segments making up the
mid-section profile of the beam and to use the slopes of
these segments as the parameters to be optimised.

For the sake of simplicity, the first attempts at the
problem on the analogue computer used only two para-
meters to describe the mid-section profile of the beam.
One parameter was the length /; of the constant height
section at the free end and the other was the slope oc
of a straight line approximation of the mid-section.
Fig. 3 shows the profile considered for this simple two-
parameter optimisation.

ARRRRERERVARARARANANY
-

Fig. 3. Beam profile for two parameter optimisation

Hill climbing on the analogue computer

The complete analogue flow diagram for the profile
optimisation using the two parameters mentioned is
given in Fig. 4. For the purpose of reference the system
can be considered to consist of three groups of inte-
grators, A, B and C with two separately controlled track-
store units. Integrators in group A are used to compute
the bending moment and deflection of the beam accord-
ing to equation (4). The independent variable x is given
by integrator Al which also feeds comparator 1 to
indicate the end of the beam. Unfortunately there is a
boundary condition problem in that the slope at the free
end of the beam is not known and needs to be found
before the deflection can be computed.

A double iteration sequence has to be adopted to
overcome this problem. Integrator A4 generates slope
along the beam and its value is tracked on track-store T1.
At the end of the first computing run, this value is stored
by T1 and used as the correct initial condition of slope

d .
a%:(O) for a second run which evaluates the required

deflection.

Integrator Bl generates the beam profile determined
by the parameters /; and oc. It is initially held with a
value corresponding to the height A, at the free end of
the beam and is only put into the compute mode at x = /;
given by comparator 2. The voltage on Bl is then
driven at a constant rate equivalent to the slope para-
meter oc, until comparator 3 detects that A = h;, where
B1 is again held constant over the remaining length of
the beam.

The integrators C1 and C2 hold the values of /; and oc
respectively and can be updated during each computing
run, depending on the optimising procedure. At the
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Fig. 4. Analogue flow diagram for hill-climbing method

end of each run integrator A5 holds the value of deflec-
tion y(x), at the free end of the beam for the given
profile. This is compared with the previous deflection
¥(x),—, on track-store T2 to give the difference in
deflection of the past two runs. By integrating this
difference y(x),_; — y(x), on integrators C1 or C2 for
a short time, new updated parameters are produced.
Before the next run, T2 is allowed to track A5 in order
to store the value y(x), ready for the next iteration. The
magnitude of y(x),_, — y(x), is dependent upon the
previous parameter change, the distance from the top
of the hill, and the gain of the optimising loop, whilst
its sign is dependent on whether the deflection has been
decreased or increased by the last parameter change.

It was found that if each parameter was adjusted
several times in turn, a reasonably quick convergence
was achieved. Even so, the system tended to hunt
around the optimum, especially when the ratio h,/h,
exceeded 0-5. It is in fact shown later that as h,/h,
increases, the hill becomes very flat topped, so one must
expect increased hill climbing difficulty.

A detailed investigation of the hunting indicated that
the main contributory factor was drift of the computing
units, particularly in hold and store modes, causing the
small errors generated as the optimum is approached to
be modified so as to initiate false error corrections. In
the particular system used, iteration speeds were typically
2 seconds per run and it is essential that integrators and
track-store units should drift as little as possible during
successive runs. Because of the time constant associated
with it, T1 cannot instantaneously track voltages fed into
it from A4. Therefore, at the end of a first run, a known
time must pass before one can use the voltage on TI.
Since T1 stores only for the time it takes to reset A4, it
will not contribute much error due to drift at say
10 mV/sec (a typical value in this system). Similarly,

T2 does not track instantaneously but as it stores con-
tinuously, and is updated every two runs, it can be an
important source of error. It is possible to reduce drift
with a backing-off current, and this was done as a
matter of course, but further reduction is achieved by
including a large capacitor in the feedback of T2.
Unfortunately updating T2 in the track mode must then
take longer. The overall effect is that drift elsewhere in
the system takes place over a longer period of time,
though T2 drifts at a slower rate. In a similar manner,
the drift of C1 and C2 can be reduced, but only at the
expense of increased updating time, during which T2 drifts
for an increased period. Obviously, one must effects
reach a compromise which best balances out the two.

It is worth mentioning that the authors, in investi-
gating the role drift played in the optimisation, deli-
berately varied the drift of T2 between +10 mV/sec and
—10 mV/sec. The result was a change in the optimum
profile corresponding to changes of up to 1% in the
values of I, and [, in cases where the hill was tending to
become rather flat.

The sequential mode control program used to control
the analogue iteration is well worth mentioning. Table 1
shows a digital control program of the operations
involved in the iterations; in the main it should be self
explanatory. One point to note, however, is the two
operational loops for the alternate computation of slope
and deflection.

The two-parameter optimisation described is, of course,
only for a straight line approximation of the beam
profile. Further three-parameter computations using
two straight-line segments to make up the mid-section
of the beam showed that a single-line approximation of
the mid-section is very near to the correct solution. This
fact was later substantiated by the solutions given by
Pontryagin’s method.
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Table 1
Sequence of digital control instructions for hill-climbing

INSTRUCTION
NO. OPERATION
1.  Reset initial conditions of all integrators.
2. Set track-store units to track.
3.  Wait for start.
4. Compute group A integrators.
5. Compute group B integrators when x =/,

(comparator 2).

6. Hold group B integrators when h= h,
(comparator 3).

7. Hold group A integrators when x =/
(comparator 1).

8.  Track T1 for 100 msec; then store.

9. Jump to 12 if deflection has been evaluated.
10.  Reset group A and B integrators for 100 msec.
11.  Jump to instruction 4.

12.  Compute C integrators for one second; then
hold.

13.  Track T2 for one second then store.

14. Reset group A and B integrators.

15.  Track Tl.

16.  Jump to instruction 4.

In view of the many difficulties encountered, it was
concluded that, for this particular problem, hill-climbing
on an analogue computer was not entirely satisfactory.
Some other more profitable method would have to be
found which would avoid the analogue computing
limitations mentioned, and lead to a more direct and
precise solution.

Pontryagin’s principle applied to the beam equations

The Pontryagin maximum principle provides a very
elegant approach to optimisation problems without
resort to hill-climbing techniques. A concise review of
the principle is to be found in Leitmann (1962) in which
the proof is developed and examples given.

When applying Pontryagin’s principle to the equations
of the beam there is no advantage in regarding x as
increasing from the beam free end rather than from the
wall. In either case one must solve two simple boundary
conditions to obtain an optimum profile, and the
equations which must be considered are similar. In
fact, x has been taken to increase from the wall, and so
equation (3), referring to Fig. 1, is used in the following
mathematical derivation. This choice is influenced
solely by the fact that the analogue representation is
slightly neater than it would be if equation (4) had been
used.

Pontryagin’s principle states that in a given system,
the pay-off function will be minimised if the control
variable u is adjusted at all times so as to maximise the
Hamiltonian function.

The differential equations of the system will be in the
form

x;i=fixo...xpu,t)wherei=20,1,...n.

The x; are designated state variables, and it is required
that a pay-off function of the form

S =X ¢xit)
=0

be minimised with respect to the control variable u(z).

In the case of the cantilever beam, let y(/), the deflec-
tion of the beam at x = /, be introduced as a dimension-
less parameter x, such that

(1
i _ Xo. ©)
I
Define v = }c as dimensionless distance along the beam,
h
and the control variable u = 5.

1
Xo, the pay-off function, must be minimised and so

n
S = X ¢;xi(t;) = xo. t,referring to the point 7 = 1,
i=0

from which it follows that ¢, = +1 and
cg=¢c=...=¢,=0.

Introducing x, as a state variable, and defining X to
mean the differentiation of x with respect to

. dy
Xo = a;t = X say @)
X 12M
X = u% where x, = — 23 ®)
12M
Xy = — pp = X;say )
X; = Au where A4 is a constant. (10)

The Hamiltonian, defined as H = 3 p;f; can now be
formed: i=0

X
H = pox, +p—:4‘32 + pax3 + p3Au. (1D

Since p; = — bb‘if[,-’ the Hamiltonian yields the following
equations for the adjoint variables:
Po= 0 (12)
P1 = —Po (13)
b= -1 (14)
Py = —p> (15)

Maximising the Hamiltonian to find the control variable
equation for minimum deflection, and setting the control
variable in this case equal to u*

0H 3pix
=~ i+ Apy=0 (16)
14
u=u*= [ipl—x{l a7
Ap;

. .. . . . 3H .
This maximises the Hamiltonian since 52 for this value
u
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136 Bellamy et al.

of u* is less than zero in value for all 7.

A general expression (see Leitmann, 1962) can now be
used to evaluate the adjoint variable boundary con-
ditions. This is

— 3 cidxi(t) = 3 [Pit)Ax (1) — pilto)Axi(t9] (18)

from which the following are obtainable

po(l) = —1 19
(1) =0 (20)
p20) =0 @1
p3(0) = 0. (22)
From (13) and (19) it follows that
p=r—1 (23)

and hence from (14) (24)

. 1—7
p2= ( ul )
Summarising, the following are the necessary equations
and boundary conditions suitable for evaluating an
optimum profile by analogue computation.

Analogue computation of equations derived by
Pontryagin

Fig. 5 shows the analogue flow diagram representing
the equations derived using Pontryagin’s method. Two
integrator groups, A and B, operating in conjunction
with two track-store units, together with three analogue
switches and eight non-linear elements comprise the
essential hardware. The single-loop digital control
program is shown in Table 2 which should be self-
explanatory.

Table 2
Sequence of digital control instructions for Pontryagin’s
method
INSTRUCTION
NO. OPERATION

1 Reset initial conditions of all integrators.

2. Set track-store units to track.

3. Wait for start.

4 Close analogue switch a, open analogue

p=—1—17 p()=0 switches b and c.
(11— 5. Compute group A integrators.
P2 = - 6. Open analogue switch a and close analogue
u switch b when u* = u, (comparator 2).
3= —ps P2(0) = 0, p3(0) = 0 7. Open analogue switch b and close analogue
. switch ¢ when u* = u, (comparator 3).
X2 = X3 x(1) =0, x3(1) =0 8. Hold group A integrators when (1 — 7) =0
) 3p,x, ] (comparator 1).
X; = Au* where u* = li—A——jl . 9. Track T1 and T2 for 100 msec; then store.
Ps 10. Compute group B integrators for 100 msec;
Provided all boundary conditions are fulfilled the u* then hold.
curve produced in the analogue simulation is the opti- 11. Reset group A integrators for 100 msec.
mum profile of the beam over its mid-section. Maximum 12. Set track-store units to track.
and minimum height restrictions can be introduced into 13. Jump to instruction 4.
the simulation itself.
p XX :_3_9,_ X, _, ¥ 4
—{ %) " N ANE.F =
p(0) L/ L’__/
+ 100v 1-‘3:(1—1:) Y, \

~Duw
A

c

%\_@xj&)
A

Fig. 5. Analogue flow diagram for Pontryagin’s method
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Considering the analogue flow diagram in detail, the
integrator Al generates the function (1—7) as a ramp
until comparator 1 detects when (1—7) falls to zero
which is at the free end of the beam. This is convenient
in that the boundary condition py(1) = 0 is thus deli-
berately made to be fulfilled.

Amplifier 2 output, u, is initially fixed through the
analogue switches at u;, which is proportional to 4, the
fixed end height of the beam. During a computing run,
u* begins at infinity since p;(0) = 0 and then rapidly
decreases until comparator 2 detects when u* = u,. At
this point the analogue switches make u = u* in order
to generate the mid-section profile of the beam. As u*
decreases further comparator 3 detects when u* = u,
which is proportional to 4, the height of the free end of
the beam. This constant height is maintained for the
remaining portion of the beam.

The function u* generated by the system is only
optimum if all boundary conditions are satisfied. The
initial conditions are all known with the exception of
1(0), x5(0) and x3(0). As previously stated, p,(0) is set
to an arbitrary value and decreased until it becomes
zero at the free end. This necessitates x,(1) and x5(1)
becoming zero at the free end of the beam to satisfy the
final conditions.

In order to satisfy the boundary conditions, guessed
values of x;(0) and x,(0) held on integrators B1 and B2
are first preset into integrators A4 and A5 respectively.
At the end of each iteration, the error voltages on A4
and AS5 are stored on the track-store units T1 and T2
and then used to adjust the initial guesses of x;(0) and
x,(0) by setting Bl and B2 into the compute mode for a
brief period. Provided the iterative-loop gains are
reasonable, the initial conditions x;(0) and x,(0) will
converge rapidly to their correct values to comply with
the condition that x,(1) = x5(1) = 0.

The first attempts at computations produced solutions
which were unsatisfactory from the point of view of
uniformity of the u* curve. The reasons for this are
twofold: first, the large number of non-linear elements
in a loop, and second, the wide range of values over
which each variable extended. The difficulties due to
non-linear effects were largely overcome by using time-
division multipliers instead of quarter square multipliers.
This avoided the prominence in the solutions of the
discontinuities due to the break points and straight line
segments which are a feature of quarter square multi-
pliers. The problem of the dynamic range of variables
was difficult to overcome since scaling is limited by the
maximum excursion a variable has to make. In parti-
cular, the term (u*)* varied over an excessive range and
in one instance went below 0-5 volt, at which point it
was very difficult to take an accurate fourth root.

Beam profile solutions

No solutions are given for the beam profile obtained
by hill-climbing since for reasons already given this
technique was abandoned in favour of Pontryagin’s
method. Some of the beam profile solutions computed
by the latter method are shown in Fig. 6. It is interesting
to note that the mid-section of the beam is almost a
straight line and only when A,/h, ratios are less than 0-5
is there any slight sign of curvature. If such a beam was
manufactured, the practical approach would obviously

,r

3o
o025k fo-
[ 0'50?\—-
<~ 0-80A —|

L1001 1010

Fig. 6. Optimum beam profiles

be to make the structure so as to include three straight
edges for ease of production.

If the mid-section of the beam is considered straight,
optimum values of /;// and /,/I become the only para-
meters necessary to describe the beam profile. These
optimum values vary according to the value of A,/h, and
the graphs of Fig. 7 serve to illustrate this effect. Inter-
pretation of these graphs shows that as A,/h, increases,
the mid-section of the beam profile reduces in length
and increases in slope. Careful examination of Fig. 7
shows that the extrapolated point of intersection of the
two curves occurs when h,/h; = 1-0 as one would
expect. Furthermore, the curve /,// aims for the origin
which is again a sensible result if one considers that /,
must be zero if h, is zero. What is not clear is the
meaning of the suggested intersection of the curve /I
with the vertical axis.

The object of the exercise is to determine the profile
of the beam for minimum deflection of its free end. It
is therefore of interest to examine the variation of
deflection for different beam profiles to establish the
shape of the hill. Fig. 8 shows the variation of a one

0.6,_

- L/t

0-54

04

0-34

0-2-

Optimum Profile Dimensions

4/t
01

T T T T T T T T T T
o o1 02 03 04 05 06 07 08 09 10
h, /h,

Fig. 7. Graph showing optimum values given by Pontryagin’s
method
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parameter hill as a set of curves for different values of
h,/h,. To obtain these curves, the assumption was made
that the optimum mid-section profile of the beam is
straight edged. On this basis, optimum oc was evaluated
from the Pontryagin results (Fig. 7) for a particular
h,/h, ratio, and set into the hill climbing system as a
fixed value. End deflections were then noted for a range
of values of /,/l. The flat nature of the inverted hill
curves near the optimum accounts for difficult behaviour
of the hill-climbing attempts, particularly when the value
of h,/h, is high. In addition, a nominal percentage
change in the value of /;/I or in the value of h,/h, pro-
duces a much smaller percentage change in deflection.
This effect should be kept in mind when estimating the
accuracy of the computing results.

0-9 o

0-7 -
0-6
05 1

04 -

Normalised End Deflection

0-3 -

02 +

T T T T T T T T T T

0 01 02 03 04 05 06 07 08 09 10

L/
Fig. 8. One parameter ‘hills’

Conclusions

Two entirely different methods of optimising a beam
profile using an analogue computer have been described.
The first method, hill-climbing, is considered unsatis-
factory, since it only produces an approximation to the
profile of the beam and correct optimisation proved
difficult to achieve. The second more direct method
using Pontryagin’s maximum principle generates the
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exact optimum profile with only two simple boundary
conditions to solve. This latter method is certainly
powerful in its application even though its non-linear
expressions are liable to introduce errors in analogue
computations.

No mention has been made so far on the solution of
the problem by digital computation. Dixon (1967)
attempted this, but made a basic error in using a wrong
beam equation. He corrected this in a later paper (1968),
and the results closely resemble those quoted by the
authors in the present paper. Dixon has confirmed that
solution by analogue computation provides a solution
many times faster than is possible by digital methods,
and it is felt that the fast iterative solutions on an
analogue computer in many ways compensate for the
slow but accurate digital computations. Perhaps some
compromise may be made by using the analogue solu-
tions as a starting point for accurate digital computa-
tions and so taking advantage of both types of machine.

It would clearly be possible to extend this optimisation
in many ways, for instance, by not fixing the width of
the beam to be a constant. This would certainly increase
the difficulty of deriving the appropriate analogue simu-
lation equations but should not be beyond the scope of
competent mathematicians. Though this paper deals
with a relatively simple set of equations, there is no
reason why the profile methods discussed should not
have wide application. In fact, the authors are at
present working on the problems of optimisation of
structures governed by higher order differential equa-
tions, involving more parameters. The authors feel that
piece-wise linear approximation and hill-climbing is not
practicable for such systems, and that solution by
digital computer is a tedious alternative with rather
prohibitive computing time. Provided one is assured
of reasonable accuracy despite the involved non-linear
functions, the application of the Pontryagin principle
appears to be an expedient choice and, the authors feel,
an extremely powerful tool in analogue computation.
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