139

The normal form theorem—another proof

By D. Wood*

An alternative proof of the normal form theorem for context-free languages is given. A series
of simple constructions lead to the result. The proof makes use of a practical method of

removing left cycles due to Foster.

(Received September 1968, revised November 1968)

1. Introduction

The normal form theorem was proved by Sheila Greibach
(1965). The proof given in that paper is not the most
transparent, so the following proof was developed
(Wood, 1968a) which leads the reader to the result by
a sequence of simple steps. Foster (1968) in his syntax
improvement device uses a method of removing left
cycles from a grammar, described informally in Wood-
ward (1966), which is the basis of Theorem 2.
Section 2 describes the notation of this paper. Section 3
contains the main results, and Section 4 contains mis-
cellaneous results and discussion.

2. Terminology and basic results

The presentation follows that of Ginsburg (1966) and
McKeeman (1966).

An alphabet 4, is a finite set of symbols. The number
of elements in a set A4, is written Card (A), the cardinal
of A. A string (or word) S, is a concatenation of symbols
over an alphabet. The length of a string S is the number
of symbols in S, denoted by |S|. The empty (or null)
string denoted by e has length 0 (this is the semi-group
unity, as xe = ex = x, where x is a word). The free
semi-group over an alphabet 4, denoted by A*, is the
set of all strings over A, including the empty string. The
semi-group zero denoted by ¢ is defined by ¢x = x¢ = ¢
where x € A*. The concatenation of n copies of x € A*
is usually written x”.

A production (or rule) / — r over an alphabet 4, is an
ordered pair with both /, re€ A*. We call / the left of
the production, r the right of the production and read
the production as / produces r. Each production is
regarded as a rewriting rule allowing the substitution of
the right of the production for any occurrence of the
left of the production in any string.

A context-free grammar G, is a 4-tuple

G=(T,S, P),

where I is a finite set of intermediate symbols which
appear on the left of productions in P, T is a finite set
of terminal symbols, which appear only on the right of
productions in P (excluding ¢), S is the sentence symbol,
Sel,P is a finite set of productions of the form
X—gq, Xel, ge({v T)*. We will henceforth write
grammar for context-free grammar.

y is a derivation of x, with respect to a grammar
G, x,y e {VT)*, denoted by

X =),
G

* Work carried out at the University of Leeds, England

if there exists a sequence w;, 0 < i< n,n>0 such
that wy = x, w, = y, and there exists u;, v;, X;, q; such
that

Xi—>q,€ P,w; = u;Xv;, wi | = uiqv;,

u,v,q;€e(IVD)* X;eL0O<i<n—1

The w; form a derivation sequence. We write x = y if
G is understood.

A left derivation (right derivation) with respect to a
grammar G, is a derivation in which each step of the
derivation sequence replaces the leftmost (rightmost)
intermediate symbol, written

L R
x =y (x=y) orsimply
G G

L R
x =y (x=y) if G is understood.

*
We write x = y if either x = y or x = y. Similarly
Ls R*
we write x = y and x =).

We write x >y if there exists no derivation of y from x.

*
Similarly we write x 4 y. A sentential derivation is any
derivation for which wy, = S.
A sentential form is any string x € (/v T)* such that
S = x. A language generated by a grammar G, is the
set of strings,

L(G)={x:xeT* and S = x}.

Two grammars G, and G, are equivalent if L(G,)=L(G,),
written G; = G,. A grammar G is ambiguous if there
exists a word x € L(G) for which at least two distinct left
sentential derivations exist. Conversely a grammar is
unambiguous if for each x € L(G) there exists a unique
left sentential derivation.}

A cycle occurs in a grammar G, if there exists a deriva-
tion X =uXv, Xel, uyve({uT)*. X is said to be
cyclic. If X — uXv then X is directly cyclic, otherwise
indirectly cyclic. X is left cyclic (right cyclic) if there
exists a left derivation (right derivation)

L R
X = Xv (X = uX).

An intermediate symbol X, is non-terminating if there
exists no derivation X = x, xe T*. A rule X —>w, is
non-terminating if X is non-terminating. An inter-
mediate symbol X, is terminating if it is not non-
terminating. The set Ay = {w: all w, X >we P} is

+ This definition of ambiguity is equivalent to that usually given
(cf. Ginsburg, 1966).

Present address: Courant Institute, 251 Mercer Street, New York, New York 10012 U.S.A.

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1ome/|ulloo/woo dno-olwepeoe//:sdiy wolj pepeojumod

140

called the rule alternative set. Each w (or X — w) is a
rule alternative of X.

A rule is left literal if each rule alternative is of the
form

X—>AX,...X,,AecT,n>0X,eIUT.

A grammar is said to be admissible if either P is
empty (and therefore L(G) is empty, or for each XelIu T
there exists at least one sentential derivation containing
X and each X €1 is terminating. Henceforth ‘grammar’
will usually mean admissible grammar.

Having introduced a basic terminology we now define
normal and quasi-normal form grammars.

A grammar is in normal form if every production is
of the form

X—>AX,... X,,n>0,A4€eT,
X, Xy,..,X, el

A grammar is in quasi-normal formif Xy, ..., X,eIv T
in the above. This gives us our first trivial result, which
we do not prove.

Lemma 1

To each quasi-normal form grammar there exists an
equivalent normal form grammar.

We now define substitution, a process of which we
will make much use. Given a grammar G = (I, T, S, P)
and a rule Y—>Y,...Y,, where Y; = X for some i,
then we can construct the grammar G, = (1, T, S, P;)
where

PP=P—-{Y->Y,...Y,hu
{Y—=Y,...Y,_wY; ... Y,:allw, X — weP}.

1

This process is called a substitution.

Lemma 2

In the above definition G, = G and substitution
preserves unambiguity.

Proof: Consider a sentential form containing Y.
uYv :gqu PN YnU E qu N Yi—IWYi+l c e an,

say, where
u,ve(uvT)*, and

w is a rule alternative of X = Y.
In G, we have, equivalently,

uYv aqu Yo wY L Y.

Only the order of the derivation has been changed, thus
L(G) € L(G,). By a reverse argument L(G,) € L(G),
therefore G, = G. The preservation of unambiguity
follows by a similar argument.

3. The normal form theorem

If G is a grammar then we construct a normal form
grammar F, such that L(F) = L(G) — {¢} and if G is
unambiguous then F is also. Using the well known
result (Lemma 3) we only need consider e-free grammars.
Theorem 1 together with Lemmata 4 and 5 prove that
if G is an e-free non-left cyclic grammar then F exists

Wood

and a construction is provided. Theorem 2 proves that
an e-free grammar can be transformed into an e-free
non-left cyclic grammar. Thus Theorems 1 and 2
together with Lemma 3 gives us Theorem 3, the normal
form theorem.

Lemma 3

Given a grammar G then there exists an e-free grammar
G, (G, contains no rule of the form X — ¢) such that
L(G) — {¢} = L(G),), and if G is unambiguous then G,
is unambiguous.

Proof: See Ginsburg (1966, p. 38). The proof makes use
of an iterative construction of which we give an informal
treatment. Let G = G°. Construct G'*! from G’ as
follows. If G; contains no rule of the form X — e then
G' = G,, otherwise for all X, X — ¢ wherever X occurs
on the right side of a production, replace that production
with productions that omit X in all possible combinations.
For example

Y — uXvXw gives Y — uXvXw
Y - uvXw
Y — uXow

Y — uow.

Then delete the rule X — ¢; if X no longer appears on
the left of any production, delete all productions that
contain X. This construction is used below in example 1.
Because of Lemma 3 we deal only with e-free grammars
in what follows. Theorem 1 gives us a method of
obtaining an equivalent normal form grammar from an
e-free non-left cyclic grammar.

Lemma 4

Given G, an e-free non-left cyclic grammar then there
exists at least one X e I such that each rule alternative
of X is left literal (such an X is also said to be left literal).

Proof: Let Card (I) = n and assume the lemma to be
false. This implies that for each X eI there exists at
least one rule alternative of the form

X—>Xw X, Xiel,we(IvT)*

It follows that we can construct the left derivation
sequence

L
W0:X03Wn,

where for each i <n

wi = Xi0;, Wit1 = Xio Ui 19,

1

X, > X, €P; X;el,w,u,v;e VT)* alli.

Because G is non-left cyclic X; # X;, i #j, i, j < n.
Therefore n + 1= Card({X;}) = Card (I)=n is a
contradiction. The lemma is true. Q.E.D.
Define a partition on I as follows

H = {X: X is left literal, X € I}

J = {X: X is non-left literal, X € I} then

I= HuJ, H and J are disjoint and by Lemma 4 H

is not empty.

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1o1e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumoq

Normal form theorem 141

Lemma 5

Given an e-free non-left cyclic grammar G then either
there exists at least one X € J such that each rule alter-
native is of the form

X—>Xw X,e HUT,we (v T)* or Jis empty.

Proof: If J is empty the lemma follows immediately,
otherwise let Card (J) = n and assume the lemma to be
false. Using the same construction as in Lemma 4 the
sequence X, ..., X, can always be found, such that
XieJ, X;# Xj, i #J,1,j < n. Otherwise the grammar
would be left cyclic.

Then

n+1=Card({X;})=Card(J) =n
as before. Q.E.D.

Theorem 1

Given G an e-free non-left cyclic grammar then there
exists a grammar G which is in normal form and G, = G.
Further, if G is unambiguous then G, is unambiguous.

Proof: Using the partition previously defined, let P; = P,
H, = H,J, = J and i = 1 initially.
Define the algorithm.

Step 1. For each XeJ; where X > X,...X,eP,
and X, € H; perform the substitution for X; in X. This
gives P;, ;.

Step 2. Form H;, = H;V{X: X e J; X is left literal},
Ji+1 :Ji—H[+] andl:i+ 1.

Step 3. If J; is empty then stop, otherwise repeat steps
1,2 and 3.

By Lemma 4, H, exists and is not empty.

By Lemma 5, steps 1 and 2 always produce H; ;> H,,
and in the case J is empty, H=1 and steps 1 and 2 do
nothing.

The algorithm must terminate because / is a finite set,
moreover it terminates in at most Card (I) — 1 steps
because Card (H,) > 1and Card (H,.) — Card (H;)>1.
By Lemma 1 there exists a normal form grammar
equivalent to the quasi-normal form grammar produced
above, let this be G;. Having only used the process of
substitution, by Lemma 2 G, is unambiguous if G is
unambiguous. Q.E.D.

Corollary 1.1

Given G a non-left cyclic grammar then there exists
a grammar G, in normal form such that L(G)—{e}=L(G,)
and G, is unambiguous if G is unambiguous.

Proof: By Lemma 3 and the theorem. It is possible
that the grammar G, obtained above is not an admissible
grammar; it is simply a matter of deleting unused inter-
mediate symbols from 7 and unused productions from P.

Corollary 1.2

Given G a non-left cyclic grammar then there exists a
grammar G; which is admissible and in normal form, as
above.

Exzmple 1 Let G = ({, T, S, P) where

I:{QaRaS}
T={ab,cd}
S=S

P={S—-b,S—>RQ,R—cQ, R—aR,
Q—~>d Q0—e Q>R

Step 1. Remove rule Q — ¢, giving
P={S—-bS—-RQ,S—R,R—cQ,
R—>c¢, R—aR,Q—~d, Q—R}

Step 2. Form Hand J, H={R}, J = {Q, S}

Step 3. Using the algorithm given in Theorem 1
generate a quasi-normal form grammar.

P,=P H ={R},J, ={0,S},i=1

P,={S—>bS8—->c00,S—~cQ,S—>cQ,S—c,
S —>aRQ,S —-aR,R—-cQ, R —>c, R —>aR,
Q—d, Q—c, Q—>aR, Q—cQ}

H, ={R} V{0, S}

J, is empty.

This grammar G = (I, T, S, P,), is in normal form; it
only remains to remove one instance of the duplicated
rule S — cQ whence the grammar is in admissible normal
form. Having developed the normal form theorem for
non-left cyclic grammars it remains to show that every
grammar can be transformed into non-left cyclic form
with preservation of unambiguity.

We use a formal version of the method used by Foster
(1968) in his syntax improvement device. We will first
discuss the method of removing left cycles by example.
The exposition follows that of Woodward (1966) when
discussing the work of Foster (1968).

A simple example is

X — Xalb, we use ‘|’ to separate rule alternatives as in
BNF (Naur, 1963). This implies
X — b|ba|baal. . .
X — bY, say, where
Y — €|alaalaaal. . . giving
Y —aY|e

Woodward (1966) compares this problem to that of
solving simultaneous equations in a non-commutative
algebra. Cycles can embrace more than one rule, for
example

X, — Xa11| X1a5,|b, })
X, = Xqa15| Xza,,|b,
in ‘matrix’ notation, this becomes X — Xa|b giving
X—>bY and Y >gaY|E, where a single underscore

means a vector and double underscoring implies a
matrix. We have

E=le;l, e5=¢,i#],
6’ i:ia

(The semi-group zero is being used in the following
manner:

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1o1e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumoq

142 Wood

X —a|d gives X —a
X — ¢la gives X —a

X — ¢ gives a redundant intermediate

symbol.)
X =[x, X3l
b = [b, by],

and
Y eril
Y = .
= [Y21 Y5

The solution in expanded form is

Xy —>b1Y|1ib2Y21 })
Xy — b Y15|b,Y5,
where
Yi—a Yila;Yale
Yy — a3 Yi|axYs 3)

Y, > a YilanYs,
Yy = a3 Yi5|as Yasle

It is not immediately obvious that this is a valid general-
isation of the simple example. Consider the possible
terminal strings over g and b that X can have. X, can
begin with b, or b,.

X, = Xya,, = X,a} > bla;"l
= X,a,,af}
X,a,,a7, = X,a5,a,,a]} = b,a5,aa7;
= X,a,,a5a,,a}].

It is fairly easily seen that the matrix solution produces
identical strings over g and b. Now consider the situa-
tion in which a;; = ¢ for some i and j. For example let
ay = ¢. Then we have

X1—>X1011ib1

X, — X1012|X2‘122|b2-
We get

Now we know that X, can only begin with b,. Therefore
we have the equation
‘ byYy = ¢

implying that as b, is not necessarily empty that Y5, = ¢.
This appears to give the following general rule: if a;; = ¢
then Y,; = ¢ under the construction. However, if we
consider the third-order case (see Appendix 3) we sce
that the following rule is the more general one.
Assume the left cycle transformation has been carried out.

Reduction rule: for any Y, which is non-terminating
define Y;; = ¢ and repeat the reduction until no further
non-terminating Y;; is found.

The left cycle removal construction
Given a grammar G = ([, T, S, P), define a partition
of I into H and J, where

H = {X: X is left cyclic}
J=1— H. If Hisempty let G, be G.

Let the elements of H be X,,..., X,, n = Card (H).,
and re-order each rule alternative so that each X; is in

the form
X; — Xia,;| Xoaz . .. | X,a,b;

collecting terms and introducing new productions as

necessary. Where a;; ¢> e for all i and j and possibly
a;; = ¢ for some i and/ Let the productions introduced
durmg the collecting together of terms be {Z, — wy,}.
Let G, = (I,, T, S, P,) where in the notation used above

I = To{Y;:i,j<n} V{Z}

Pi=(P—{X—>w:XeH)}
U{X;—>bY;; 1 1 <i,j< n}
Y = ay Yy, 1< ij, k<n}
ul{Y,; —e: 1 <i<n}
VAZ = wil,

and where we apply the reduction rule to remove non-
terminating Y;’s.

Notes: 1fa;; 2 eis allowed, we could have the following
situation: S8 |a, which under the transformation
would still have a left cycle, because a;; = €. We there-
fore exclude this possibility. If X — Xb and X — Xaa ¢ P
then this would be rewritten X — XZ, Z -~ b, Z — aa,
when collecting terms.

Theorem 2. The left cycle removal theorem

Let G = (I, T, S, P) be an admissable e-free grammar;
using the construction defined above we obtain G;.
Then G, is non-left cyclic, G, = G and if G is unam-
biguous then G is unambiguous.
Proof: If G, is the same as G we have nothing to prove;
otherwise:

Part 1. G, is non-left cyclic. If X eJ then the trans-
formation has no effect and by definition X is non-left

cyclic.
Consider X; € H, then after the transformation we have

Xi4>blYli|"'|bi iii"'

therefore when accepting (or generating) an X; we first
accept (or generate) a b, Now at least one b; + ¢
exists (otherwise G would be non-terminating), and since

G is efree, b; 7é> €.
By the construction the b; are noi-left cyclic, therefore
the X, are non-lefi cyclic in the grammar G.

&
Consider Y;;el,. The Y;;¢1; therefore since a;; > €

does not contam Y,;, each Y is non-left cyclic. Similarly

each Z; is non-left cyclic.
Therefore G, is non-left cyclic.

Part 2. G = G,. Let Card (H) = n and let
F= {(191) L aij i 4’9 1<ij< n}s
E={i:b;# ¢, 1<i<n}.

(a) L(G) < L(G)).

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1o1e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumoq

Normal form theorem 143

It suffices to show that a sentential form uX;v gives
rise to the same derivation in G, as in G. If X;€J this
is trivial, because we have not altered these productions.
Let X,eH, then X; —> Xa,|...|X:a;|...|b; giving

uX;v ? uX;a;;v, where (j,i)eF

? uXizajz.ilajliv9 where (jbjl) eF
? qu)najlnj”l—l A ajliva

where
U Ji—D€EF, 2 < k< m.

This derivation can be terminated at any time by re-
placing X;, by b; €E. We can construct the same
derivation in G,

uX v =ub; Y; v, j,€FE

Jm = Imi
Gy

= ub;, @, Y, iv

G,
? ub;, ...a;,;a;;Y;v
1

Choosing Y;; — € as the next production to be applied,
we then have the same derivation in G, as in G, therefore
L(G) € L(G,). We have excluded from consideration
the introduction of the Z, — w,; productions and we
have also assumed the productions of G have been
reordered and terms collected. It is fairly easy to see
that this simplification does not affect the result in any
way. Note that Y;; can terminate if and only if i = j.

(b) L(G,) € L(G).

Using the reverse of the above argument we can show
that any derivation of uXv in G, can be constructed in G.
Note that Y;; and Z; can only appear in derivations from
an Xe H. By the use of the reduction rule during the
construction all putative non-terminating derivations in
G, have been eliminated.

Therefore G, = G.

Part 3. Gisunambiguous implies G, is unambiguous.
Assume G, is ambiguous. It must be ambiguous within
the transformed productions, otherwise G would be
ambiguous. Treat the b; and a; as if they were terminal
strings, without loss of generality; we can then use left
derivations. We can only enter the transformed pro-
ductions through an X;. Therefore there exists an X;
which gives rise to two left derivations over G,.

Consider the derivation

uXw :L> ub;a;;, . ..a;,v (by Part 2)
“ ueT*,ve(Iv T)*.
Then either
by .. .ay,,,0<p<m,

(]fp = m9jp+l = l)

(1) bjl e ajp,-p“ =

or

(“) ailr.ihl cct ajﬁ-fml = ajk’k*l ttt alp’m—l’ 1 < k <p

Both cases imply that G is ambiguous (by Part 2).
Therefore G, is unambiguous if G is unambiguous. We
are now in a position to state and prove the normal form
theorem.

Theorem 3. The normal form theorem

Given an admissible context-free grammar G there
exists an admissible grammar G, whose rules are of the
form

X >AX,...X,, AeT, X, X,, . .

such that L(G) — {€} = L(G,) and G, is unambiguous
if G is unambiguous.

L, X,el,n> 0,

Proof: By Lemma 3 we can remove all rules X — e,
giving L(G,) = L(G) — {e}.

By Theorem 2 we can remove left cycles giving
G; = G,.

By Corollary 1.2 we can construct a grammar G,, in
normal form, such that G, = G3, and G, is admissible.

Therefore L(G,) = L(G) — {¢} and G, is in normal
form. Each step preserves unambiguity, therefore G, is
unambiguous if G is unambiguous.

A grammar is in reverse normal form if its rules are
of the form X - X, ... X,4, AT, X, X;el and n > 0.
The proof of Theorem 3 is symmetric, so we obtain the
result.

Corollary 3.1

Given a grammar G there exists a grammar G, in
reverse standard form, L(G,) = L(G) — {¢} and if G is
unambiguous G, is unambiguous also.

We now give a worked example.

Example 2
This is the example used by Sheila Greibach (1965).
Let G=(,T,S, P), where
I={S, Y},
T ={a,b,c,d},
S=S
and

P={S—>a S—>SbS— Ya,
Y—>c Y— YYd}.
Rewrite P as
S — Sb|Yala
Y — YYd|c, then H = {S, Y}.
Using the construction of Theorem 2 we can rewrite
this as

S—)(IY“]CYZI
Y > CY22
Yy —>bY e

Yy~ aYy|YdYy, Y, = ¢asap, = 4,
Y,, = YdY,,|e.
If we now remove the e-rules we obtain
S —alaY|cY,,
S —c¢|cY>,
Y — b|bYy,
Yy — alaY,| YdY,,
Y,, = Yd|YdY,,.

Having removed left cycles we now substitute for Y in
rules Y,, and Y,,.

Yy —alaYy|ed Yy |cYa,dY s,
YZZ —> CdlCY22d|CdY221CY22dY22.

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1o1e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumoq

144

We can remove the rule Y —c¢|cY,, and letting
Yll - A, Y21 - B, Y22 - C we Obtain

Gl :(11’ TaS’Pl)

where
I, ={S, 4, B, C}
and
P,={§S—>a S—>aAd,S— cB,
A—>b, A—bA,
B—a, B—aA, B— cdB, B— cCdB,
C—>cd, C—cCd, C— cdC, C— cCdC}.
This is in admissible quasi-normal form. To obtain
normal form introduce the production D — d, and sub-
stitute D for d everywhere in P;. This can be reduced
to the same form as Greibach (1965) by noting that
S — ¢B can be replaced by
S —ca, S — cad, S — ccdB, S — ccCdB
and that S — ccdB|ccCdB can be replaced by
S — cCa|cCaA.
There is a small error in the example in Greibach (1965,

p- 48) because of a mistake in the substitution of Y in
one of the rules.

4. Discussion

Sheila Greibach (1965) makes two apparently arbitrary
restrictions on context-free grammars. These are

(1) they should be e-free,
(2) their rules should be of the form
X—>A4AX,...X,, n>1
or X—>a,aeT, A, X;e(IvT), Xel

(1) We have made the same restriction by use of
Lemma 3.

(2) Theorem 1 does not depend on these assumptions
but Theorem 2 does. For example, consider equations
(1) in which a;; = €, say, then we have an example of
infinite recursion and ambiguity, because X; — X, is
obtained. Also in equations (3) we have

Y~ Y11[a12Y2,le.

This is equivalent to allowing n > 0 rather than n > 1
in the above. We see that the two assumptions are

necessary (we use the condition a,,-;l e instead of
restriction 2). One further point of difference is that
Greibach removes left cycles and maintains the e-free
property. This is because she uses a transformation
similar to

References

Wood

X—>blbY...(Wood)
and Y —aY|a, rather than

X—>bY...(Foster)
and Y—>aY|E

as we do in the left cycle removal construction. The
reason for our choice is that it increases the ‘left-
factoredness’ of a grammar (see Wood, 1968b; Wood-
ward, 1966), this is important in the syntax improvement
device (Foster, 1968). In Appendix 1 it is shown that
the two transformations are equivalent. However
because the Foster transformation introduces rules of
the form X — € into the grammar, it is better to use the
Wood transformation if it is required that the non-left
cyclic grammar should also be e-free. In Wood (1968b)
motivation is given for choosing the Foster transfor-
mation.

The Greibach transformation can be described as
follows: If there exists no mutual cycle between X; and
X; then there is no necessity to treat X; and X; as if
a mutual cycle does exist. This means we can group the
term involving X; (in the rule X; — X,a;) with b;, and vice
versa, whilst we perform the transformation on X; and
X;. Thus while performing the remainder of the trans-
formation we resume the status quo. In Appendix 1
we show the equality of a particular example of the
Greibach and Wood transformation. Rather than
perform the Foster transformation simultaneously on
all elements of H we could split H into mutually disjoint
sets, where

L L
HX)={Y:X;,=>Yw, Y=Xp,wove(lVT)*
X;, Ye H}. Then

k
H=v H(X)), 1 < k< Card(H). The left cycle
i=1

removal construction could then be applied inde-
pendently to each H;(X)).

By e-normal form we mean a grammar whose rules
are of the form

X—>aX;...X,, n>0
or X—>e X, X €l,aeT.
Lemmata 4 and 5 and Theorem 2 can be proved by
similar methods if the ‘e-free’ restriction is removed.
We can then obtain the e-normal form theorems equi-
valent to Theorems 1 and 3 (see Appendix 2).

Acknowledgements

I wish to thank Dr. M. Wells, my supervisor, for his
constant encouragement during the period this work
was performed. I also thank the referee for discovering
an error in an earlier draft of Theorem 2 and for
suggesting the correction.

FOSTER, J. M. (1968). A syntax improving program, Computer Journal, Vol. 11, p. 31.
GINSBURG, S. (1966). The mathematical theory of context-free languages, London: McGraw-Hill Book Co.
GREIBACH, SHEILA A. (1965). A new normal-form theorem for context-free phrase structure grammars, J. Assoc. Comp. Mach.,

Vol. 12, p. 42.

MCcKEEMAN, W. M. (1966). An approach to computer language design, Technical Report CS48, Computer Science Dept., Stanford

University.

NAUR, P., et al. (1963). Reviseq report on the algorithmic language ALGOL 60, Computer Journal, Vol. 5, p. 349.

Woob, D. (1968a). On generalized interpretive schemes for programming languages, Doctoral dissertation, Leeds University.
Woob, D. (1968b). The theory of left factored languages (in preparation).

Wo0ODWARD, P. M. (1966). A note on Foster’s syntax improving device, RRE Memorandum No. 2352, Royal Radar Establish-

ment, Malvern.

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1ome/|ulloo/woo dno-olwepeoe//:sdiy wolj pepeojumod

Normal form theorem 145

Appendix 1

We illustrate the derivation of both the Wood and
Greibach transformations by example. The Foster
transformation on

X—Xalb

is X—>bYand Y >aY|E.
In particular we have

X —>X1011|X2‘121|b1

X, —>X1¢112|X2“22|b2
giVing Xl '—>b1 Y11|b2Y21

X, ""'bllelb2Y22

Yy = ayYylapYyle

Yy = ay Yyilay Yy,

Yy, = ap Yi5la,Ys,

Yy = ay Yiz|aYo,le.
Removing the e-rules this gives

X; = by|b Y14|by Y,

X, —>b1Y12[b2|b2Y22

Y1 — aplan Yila Yy,

Yy = ay1|ax Yi1|ax Yoy

Y, = ay Yysla]a,Ys,

Yy, = a3 Y15|az,0a5,Y 5,
which in the notation above is

X —b|bY and Y — alaY,

ie. the Wood transformation. Assume a,; = ¢, we
then have

X, — Xja4|b,
X, — X,a0,|(b;| X1a1,)
giVing Xl 9b1|b1Y11
Xy — by X1a15|b,Y 5| X101, Y,)
Y _>‘111|011Y1x
Yy, —> ap|axY,,;
under the Greibach transformation. Under the Wood
transformation we have
X, '“)bllblYll
X, —>b1Y12|b2|b2Y22
Yy —agylan Yy)]
Yy, = a YislagslanYs,
Yy — azz|“22Y22-
Comparing (1) and (2) we see that they differ as follows
1 X, = Xa2| X1a,,Y 5,
2 X, —>b1Ypand Yy, — ay,Yylas,]a, Yo,

Considering the strings generated by X, in each case we
have

1) bia},ay; or bya}ia, Yy, n > 1
and

(2) bla'lllalz or blaillaleZZ’ n> 1.

Therefore the two transformations are equivalent.

Appendix 2

An intermediate symbol X, is e-left literal if at most
one rule alternative is X — € and the remaining rule
alternatives are left literal.

A grammar is in quasi-e-normal form if each rule is
e-left literal; e-normal form can be defined in a similar
manner.

Lemma A4

Given G a non-left cyclic grammar then there exists
at least one X eI such that each rule alternative of X
is e-left literal.

Define a partition on I as follows

H = {X: X is e-left literal, X e I}
J=1— H, His not empty by Lemma A4.

Lemma A5

Given G a non-left cyclic grammar then either there
exists at least one X € J such that each rule alternative of
X is of the form

X—>XworX—e X,e HUT, we(IVT)*,

or J is empty.
The proofs of Lemmata A4 and A5 follow those of
Lemmata 4 and 5 exactly.

Theorem Al

Given a non-left cyclic grammar G, then there exists
a grammar G, which is in e-normal form, and G, = G.
Further if G is unambiguous G, is unambiguous.

Proof: Using the algorithm defined in Theorem 1, the
only major difference in the proof is that step 2 may not
always generate an H;,; > H;. For example, let Y e J;
such that

Y->Y,...Y,, Y eH VT

If Y, is left literal then on substitution Y is at least e-left
literal. If, however, Y, is e-left literal then on sub-
stitution we get

Y'-)‘WYZ...Ym
Y'—>Y2...Ym
or Y—>e

It can be proved by methods similar to those used in
Lemmata 4 and 5 that there exists a £ > 0 such that

H; < Hiyy
and Hi:Hi-l-l:"': i+k—1
where k< max{|lw| : Q >weP}.

An upper bound on the number of iterations needed to
complete the process is

|wl.
allw, X->weP

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1ome/|ulloo/woo dno-olwepeoe//:sdiy wolj pepeojumod

146 Wood

Theorem A2. The left cycle removal theorem

Let G = (I, T, S, P) be an admissible grammar; using
the construction defined in Section 3 we obtain G,.
Then G, is non-left cyclic, G, = G and if G is unam-
biguous then G, is unambiguous.

*
Proof: In the proof of Theorem 2 we make use of b;#> €
only in Part 1. Consider X; € H, then after the trans-
formation we have

ij_)blyljl o .. lblYI]| e e ey
therefore when accepting (or generating) an X; we first
accept (or generate) a b;. Now at least one b, # ¢
exists, if b; 2 ¢, then

X;— Y, forallj1<j<n,

which could lead to a left cycle unless we restrict each
a;; as follows.

Restriction: if b; X e then for each a,, 1 < k < n,

*
a7 X, ue(IVT)*, 1 < m< n

With this restriction the proof of Part 1 of the theorem
follows immediately.

Consider the situation in which the above restriction
no longer holds.

For example, with the grammar G = (I, T, S, P),
where

I ={X,, X3},
T:{a7 b9p},
S=Xy
and P = {X; — X X,a|ble, X, — X, p}.
X —>bY11|Y11
X, = bYy,|Yy,

Y“ %X20Y11|€
Y, —> XzaYulP,

we can see that X, still has a left cycle. The reason it
was not removed is that although this left cycle existed
in the original grammar, it was hidden. Apply the
construction again, first substituting for Y, in X, — Y/,.
We obtain

X, = X,aY,,|(p|bY,2)
giving X, > pZ|bY,Z
Z —~aY,Z|e.

We have now removed the left cycle from X,, thus the
grammar is now completely non-left cyclic. This leads
us to propose the following conjecture: for every
grammar G there exists a finite integer k such that
after k successive applications of the left cycle removal
construction the grammar so obtained is non-left cyclic,
and this is the least such k. However, consider the
following grammar:

G = ({S}, {a}, S, {S — SSS|ale})

which generates the set {a}*. There does not exist any
finite k which satisfies the above conjecture. This
grammar is ambiguous (‘infinitely’ ambiguous). We

could exclude such cases by the addition of ‘an unam-
biguous grammar G’ to the above conjecture. Note
that the above grammar would also be excluded from

*
Theorem 2 because SS = a,; # € exists. Thus amend

*
the conjecture to emphasize the need for each a;; #> «.

Lemma 5

All intermediate symbols which are left cyclic in a
grammar G will, whether open or hidden, be included
in the set H under the left cycle removal construction.

Proof: This immediately follows from the definition of
left cycles.

We define the left cycle order LCO, of a grammar as
the integer k specified in the conjecture above, where

*
each a;; #> e. That the LCO of a grammar (in which
*

the restriction a;; > € holds) is finite could perhaps be
derived intuitively from the application of Lemma 3
and Theorem 2 to the grammar G (i.e. first remove
e-rules, then do the left cycle removal construction).

Theorem 4

If G=(,T,S,P) is an admissible grammar and
under the construction no a;; £ ¢ then there exists a
grammar G, which is non-left cyclic, G, = G and if G
is unambiguous G, is unambiguous.

Proof: We need to show that such a grammar has an
LCO; if it has the proof follows easily. By Lemma 5
both hidden and open cyclic intermediate symbols will
be included in H. This means that each a;; is of the form:

X11X12"‘lew31<~lk<n51<k<p’
p>=>0,we(VT)*

If a; = Xw, Xel — H, we (IVT)* then X cannot be
a member of a left cycle, because if it were it would be in
H. Therefore only leading intermediate symbols which
are in H are of interest. Consider the maximum of p
over all a;;. We define m = p + 1 to be the left cycle
order of G.

If m =1 then, by Theorem A2, G, exists and the
theorem follows trivially. Otherwise at each stage of
the transformation we remove the open left cycles and
disclose some hidden left cycles (i.e. each application
of the left cycle removal construction). Now by the
example above we see that we reduce the LCO of a
grammar by one after each transformation. Thus
after m — 1 transformations the LCO is one, we can
then apply Theorem A2. The proof of equivalence and
preservation of unambiguity follows by induction on
the LCO.

Theorem A3. The e-normal form theorem

Given an admissible context-free grammar G there
exists an admissible grammar G, in e-normal form such
that G, = G and G, is unambiguous if G is unambiguous.

Proof: Under the conditions of Theorem 4 we can
remove left cycles giving G, = G. By Theorem Al we
can construct a grammar G, in e-normal form, where
G, is admissible. Therefore G; = G, G, is in e-normal

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1o1e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumoq

Normal form theorem 147

form and as each step preserves ambiguity G, is
unambiguous if G is unambiguous. By Corollary 1.2,
the result then follows.

Appendix 3

Consider the effect of a particular a;; = ¢ in the left
cycle removal construction. Without loss of generality
choose a;; = ¢ in the third-order situation. Our
original equations are:

X, — Xja,|Xya;1b,
X5 — Xya5| X,3a55| X3a3,| by
X3 — X,a,3]X,a,53] X333 bs.
Under the construction we obtain:
Xy —>b1Y|||b2Y21|b3Y31
X, = b, Y12|b2Y22|b3Y32
X; — b, Y13|b2Y23|b3 Y33
where
Yii —anYilanYala;sYsle
Y, —ay YilaYasla;sYs,
Y13 —a Yisla;Y)s0a,3Y 5
Yy = ay YilaxYaylas Vs

Yy, = a3 Y153 Y22]a53Y 35| €
Yy3 — a3 Y312, Y23]a23Y 33
Y3 — a3 Yyl|asYalassYs,
Y3, — a3 Yys|asYaslassYs
Y33 — a3, Y3]asYaslass Yisle

If we now applied the simple rule a;; = ¢ implies
Y, = ¢, we find that X, could not begin with b; after
the construction, whereas before the construction it
could begin with b;. Therefore carrying through the
consequence of a;; = ¢ we delete the alternatives
ay Yy, i=1,2,3. If we now also assume a;, = ¢,
we also delete a;,Y,;, i = 1,2, 3. However we are then
left with two non-terminating rules, namely

Y3 —asYy
and Y;, = as;Ys;,.

In this situation, however, we must delete these rules
by defining Y3, and Y3, to be ¢. If we did not do this
X, and X, would have non-terminating alternatives,
corresponding to the fact that X; and X, cannot begin
with b; if a;; = a3, = ¢. This leads to the following
rule:

Reduction rule: For any Y;; which is non-terminating

define Y;; = ¢ and repeat the reduction until no further

Y;; is non-terminating.

Book Review

A Mathematical Theory of Systems Engineering, by A. Wayne
Wymore, 1967; 353 pages. (London and New York:
John Wiley and Sons Limited, 150s.)

As a theoretical text on systems engineering this book has a
relatively unique feature: it uses set theory rather than
classical algebra. It aims at a general theory of systems and
succeeds in so far as it treats data processing automata, control
and man-machine systems between the same covers. This is
a refreshing standpoint for control engineers, but disappoint-
ing for those who look for a direct application. Set theory
provides a weak mathematical structure which, due to its
weakness, embraces many systems while allowing little scope
for useful manipulation. Indeed, the author makes no claims
in this respect and is happy to provide the tools, perhaps
merely a language, whereby systems may be described.

The introductory chapter makes the point that rigour is
important for systems that involve information and its com-
munication. These cannot be tackled intuitively in the same
way as systems that have physically tangible parameters. The
chapter also presents an introduction to the set theory that is
used in the rest of the book. Chapter 2 defines the elements
of the general theory. Here control concepts of state space
appear amid tools of automata theory such as admissible
input sequences, semigroups and Turing machines.

The third chapter is on modelling and I consider it to be a
highlight of the book. Proceeding from the premise that

... modelling is an art . . . ’ the author asserts his artistry
by producing models for a wide variety of systems. These
include computing elements, a widget factory, a watershed
and a human-tracking experiment. The introduction of a
pseudo-computer language is interesting since it underlines
the fact that the aim of modelling is, usually, the design of a
computer simulation program. Chapter 4 is on the com-
parison of systems. Laws of homomorphic mapping are used
to generate equivalence classes as is customary in the mini-
misation of sequential machines. Chapter 5, coupling of
systems, deals with cascading and feedback. Here the author
is led to the assertion that a system with no input is no system.
This is a pity since it excludes autonomous machines which
are generally interesting systems.

Chapter 6, subsystems and components, uses concepts
developed in connection with sequential machines by Gill,
Hartmanis and Stearns for the decomposition of a system
into elements. The discussion on duality in systems and the
meaning of observability and controllability is worth noting.
Chapter 7 is on discrete systems and provides an interesting
link between programming and state transition tables.

The book is well organised. The mathematical and the
discussion sections are clearly set out. However, even though
the jacket claims that all the necessary mathematical
foundations are included, a reader with no knowledge of set
jargon may find it difficult to follow.

IGorR ALEKSANDER (Canterbury)

¥202 IMdy 61 U0 3senb Aq 0£29GE/6€ L/2/Z L/e1o1e/|uloo/woo dno-olwepeoe//:sdiy woi papeojumoq

