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A method of storing the orthogonal polynomials used for curve

and surface fitting
By D. G. Hayes*

This paper describes a method of calculating and storing the orthogonal polynomials used in
curve and surface fitting. The method saves considerable store space and time, and makes the
amount of space needed independent of the number of data points.

(Received August 1967, revised July 1968)

This paper is concerned with the problem of finding a
polynomial approximation to a function of one or two
variables, given the values of the function at a number
of data points. If the x-coordinates of the data points
are not distributed according to any definite law, one
uses the method of Forsythe (1957). This method
makes use of polynomials orthogonal over the given
data points.

Forsythe suggests that the values at each of the data
points of all the orthogonal polynomials used in the
recurrence relation should be stored. This requires con-
siderable store space. The space problem is worse in
the case of surface fitting (Weisfeld, 1957), because the
recurrence relation now contains more than three terms,
and the number of points is usually greater.

The method of storing polynomials, to be described
here, makes the space needed independent of the number
of data points, as well as shortening the time of com-
putation.

Curve fitting

Let the data points be (xg, ¥o), (x5 ¥1), . . . . Forsythe’s
method consists of generating polynomials P,(x) ortho-
gonal over the data points using the recurrence relation

Pr(x) = A,(X - “r)Pr— l(x) - /3,.P,._2(X) (1)
with initial polynomials
Po(x) = Ao Py(x) = A Ao(x — X)
where « and B are given by
(XP,._ 1s Pr— 1) Ar([,r— 1 Pr— 1)
=35 3 R S S T 2
o (Pr— 1 Pr— 1) Ig )‘r— I(Pr—2’ Pr—2) ( )

The notation (F, G) is used here and henceforth to denote
the scalar product ZF(x,.)G(x ;) summed over all the given

data points, for any two functions F(x), G(x).
The polynomial approximation H,(x) of degree n is
then given by

H) = 3 oP) ©
where ¢ = (Pj, ,V)/(Pj, Pj)- (4)

Surface fitting

In the case of surface fitting, we choose orthogonal
polynomials of the following form, where x and y are
the independent variables, and z the dependent variable.

Poo = ao

Pl’o — al + blx

Py =ay+ byx + ¢y

Py = a3 + byx + c3y + dsx?

Py = a4 + bax + ¢4y + dox* + esxy

In general, P, ; is a polynomial of degree r. It may
contain any term of degree less than r, and also terms in
X, xly, x~%2,...,x "%, but no terms in
xrfsflys-}—l’ . ‘,yr'

These polynomials may be found from the relation

Pn,m = An,men~l,m - 2 o‘r,spr,s (5)

where the summation extends over

N r=ns<m
(i) r=n—1,alls
(i) r=n—2,s>m
and ar,s = An,m(xpnf 1,m» Pr,s)/(Pr,s’ Pr,s)' (6)
A different recurrence relation must be used for the
polynomial P, ,. This polynomial is given by

Pn,n = An,ny})n—l,n—l - Z <xr,sPr,s (7)

where the summation extends over

) r=ns<n
(i) r=n—1,alls
(iii) r=s=n—2,

r,s An,n(y})n—l,n—la Pr,s)/(Pr,n Pr,s)' (8)

The polynomial approximation is now given by

and o

Hn(x’y) = E 2 cr,sPr,s

r=0 s=0

Where cr,s = (Pl', Rad Z)/(PT,S’ Pl‘, S)' (9)

Modified method of calculating and storing the orthogonal
polynomials

The method of calculating and storing the orthogonal
polynomials will be described in detail as applied to
curve fitting, although it is likely to be of greater use for
surface fitting. In the case of surface fitting, the equa-
tions which need to be used are similar to those used for
curve fitting, but more cumbersome to write down.

One obvious method of storing the polynomials is to
store the values of the polynomials at each of the data
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points. Equation (3) then gives the approximating
function H,(x) as the sum of a series of orthogonal
polynomials. It is usual to convert this into a series of
powers of x by a further use of the recurrence relation (1).

Alternatively, H,(x) may be expressed as a series of
Chebyshev polynomials (Clenshaw, 1960). The same
author recommends the storing of the orthogonal poly-
nomials in terms of the coefficients in their Chebyshev
expansions throughout the computation. These expan-
sions are used to recalculate the values of the orthogonal
polynomials at the data points when necessary.

The modified method makes use of the quantities
ay, ay, ...,a, and by, by, by, ..., defined for any
polynomial Q(x) by

0(x) = aoTo(x) + a\Ty(x) + . ..
where n = degree of Q(x)

(@, T) = b, (11)

T,(x) denotes the Chebyshev polynomial of degree r.

The method consists of calculating and storing the
values of a,, and as many as necessary of the values of
b,, for each orthogonal polynomial.

It will be shown that the recurrence relation (1) can
operate entirely in terms of the values of a and b of the
orthogonal polynomials. There is thus no need to store
the coordinates of the data points, or the values of any
orthogonal polynomial at the data points.

+ a,T,(x) (10)

Properties of the quantities @ and b

Given the values of a and b for any two polynomials
Q(x), O(x), one can find the value of (Q, Q) as follows:

(9, 0) = (Q, doTo(x) + a1 Ty(x) + d, To(x) + .. .)
- a-obo + dlbl +
== 0050 —‘I— (1151 + “ o (12)

In the same way one can find the value of (Q, y) given
the values of d, defined by d, = (T, y) from

(Q,y) = avdy +a;dy + ayd, + . .. (13)
The Chebyshev polynomials have the properties

2T, =Tys1+T,-1  (0>1)
xTO - Tl'

By definition Q(x) = Z a,T.(x)
hence xQ =1 Z, a(T,iy + T,y + aoT,

which may be re-arranged to give
xQ=1% ;2(0r+1 +a,- )T, + 3a,Ty + (ao + 3a)T.

If we let 0= x0

then do = %a, (14)
a, = %a, + a, 1s)
a,=%a,y+ta_y) (r>2). (16)

Again, (Q T, =b,

which gives
(XQ, Tr) = (Qa xTr) = "12'(br+1 + br~ 1) (r > 1)
(xQ7 TO) = bl'

We then have
by = b, (17)
b, =3b,sy +b,_y) (r>1). (18)

Given any set of polynomials expressed in terms of
their values of a and b, we can thus perform the following
operations on them.

(1) Given Q(x) find xQ(x)
1.e. given the values of @ and b for Q, find the values of
a and/or b for xQ. This is done as shown in equations
(14)-(18).

(ii) Given any two polynomlals 0(x), O(x), find
(Q, 0). This is done using (12).

(>iii) Given Q(x), find (Q, y).
This is done using (13).

(iv) Given two polynomials Q(x), O(x), find
A0(x) + pO(x). If welet Q = AQ + u0, then we have
simply

1_;, = Ab, + ub,.

Thus one can carry out all the operations necessary to
use the recurrence relation (1) and equations (2), (3),
and (4) entirely in terms of the values of the a and 5.

For the orthogonal polynomial P;, the quantities
bg, by, . . ., bj_; are zero, for the followmg reason. Any
polynomlal and in particular any Chebyshev polynomial,
of degree less than j can be expressed in the form

Z APi(x), where s <j. Thus if T, = Z APi(x),

then from definition (11) we have

‘=lr = Aar + f’“dr

b, —(T,,P)H(Z NPy, B) = z M(P;, P)

=0if r<j smce the polynomials P, are orthogonal.
Thus by, by, . . ., b;_, are zero. Similarly for the poly-
nomial xP; we have by, . . ., bj_, equal to zero.

The number of values of the b, which need to be stored
for any polynomial depends on the polynomial, and
also on what degree the final polynomial approximation is
to be. If the final approximation is to be of degree n, then
for the polynomial P;, we must store b;, b;.. ..., b, ;.
For the polynomial xP;, we must store b;_, .. ., by, ; ;.

Surface fitting using the modified method
When surface fitting, a similar method can be used.
The definitions corresponding to (10) and (11) become
O(x, ) = aooTo(x)To(¥) + a10T1(x)To(»)
+ axTr(x)To(y) + . ..
+ ao To()Ty(y) + anTi()Ty(») + . ..
4+ ...

and (@, T(0)T(y) = b,

The equations (12)-(18) can easily be generalised to
deal with the case of surface fitting.

For the polynomial P,, the values of b which need
to be stored are b, ..., by,,_,, ie. all non-zero
values of b with the sum of the two suffices not greater
than 2n — r.

Advantages of the modified method
Using the modified method, the coordinates of the
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individual points are each used once only, in calculating
the values of b for the zero degree polynomial, and the
values of d. The coordinates, and the values of the
orthogonal polynomials at the data points, need not be
stored. Thus considerable store space is saved, espe-
cially if the number of points is large.

Let n be the degree of the polynomial approximation
required, and m be the number of data points. In the
case of curve fitting, the modified method needs approxi-
mately 5n locations of store. A method which stored
the values of the polynomials at each of the data points
would need approximately 4m -+ n locations.

In the case of surface fitting, the number of store
locations needed for the two methods are approximately
¢(n + 1)* and m2n + 3) + 2(n + 1)? respectively.

In the case of curve fitting, the two methods take
approximately the same amount of computer time. For
surface fitting, the modified method requires less time.
The time saving may be illustrated by an example in
which a surface of degree 8 was fitted to 150 points.
On an ICL 1905E computer, a program written by
the author which used the values of the orthogonal
polynomials at each of the data points took 23 seconds.
A program using the modified method took 8 seconds,
of which 2 seconds were spent finding the values of d,
and the values of b for the zero degree orthogonal
polynomial.

Numerical problems

When curve fitting, one can normalise the x-co-
ordinates of the points so that they lie in the range
(— 1, 1). If the points are not correctly normalised, and
if any points lie outside this range, this causes ill-con-

References

ditioning. Ill-conditioning also occurs if any large
portion of the range is unoccupied by points.

When surface fitting, one must normalise the points
so that they lie within the square |x| <1, |y| < I,and
so that there are no large regions within this square
unoccupied by points. If the points occupy a region in
the shape of a parallelogram, then such normalisation is
possible. However, if, for example the points occupy
the interior of a triangle, then they cannot be satis-
factorily normalised. The best one can do is to choose
a parallelogram whose boundary lies as close as possible
to the boundary of a triangle, and normalise the points
as if they occupied the interior of that parallelogram. In
the former case numerical difficulties are not likely to
arise. In the latter case it may be necessary to restrict
the degree of polynomial approximation to prevent
numerical difficulties.

The modified method of surface fitting makes use of
products of Chebyshev polynomials in x and y. These
polynomials have been chosen because they may be cal-
culated using a simple recurrence relation. If the data
points can be satisfactorily normalised, they do not cause
ill-conditioning. It may be possible to prevent ill-con-
ditioning in certain other cases by using some other
polynomials in x and y. The author has not investigated
this possibility.
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Book Review

Decision Analysis, by Howard Raiffa, 1968; 309 pages.
(Addison-Wesley.)

The author, a self confessed ‘Bayesian’ and a very persuasive
one | might add, has transposed a series of lectures on
decision analysis into a very readable text book. These
lectures were given at various times and not always in the
continuous entity that comprises this work. This, however,
does not mitigate against cohesiveness and the text flows in
a calm, logical and very acceptable manner. Almost unique
is the author’s amiability in footnoting any section or chapter
not vital to the theme of his argument so that the reader may
bypass it if he so wishes. In fact, Mr Raiffa openly declares
when he digresses and rides a personal hobby horse. One
could wish for this in all authors.

One could also wish that the subject of ‘Decision Analysis
in Conditions of Uncertainty’, as outlined so admirably, might
find an audience and indeed be practised in the senior manage-
ment levels of most UK companies. The ideas of PERT,
network analysis and resource allocation are gaining adherents
rapidly, and so they should. However, the decision point
must have been reached before these disciplines can be of use.

One suspects that in many cases the decision point may well
have been arrived at by almost caveman-like processes of
thought or hunch or just plain stubbornness.

A first casual flick through the pages might daunt the non-
mathematician for there is an apparent profusion of algebraic
formulae. This is not the case; in the main it is quite basic
and easily comprehended. The work progresses from the first
analysed elements of a basic decision, highlighting decision
points or where chance prevails, through probability assess-
ments, payoffs and the use of judgemental probability. The
concluding two chapters deal with implementation of real
rather than experimental situations and a final bibliographical
‘walk through’ that is far better than a mere list of references.
This book can be recommended as reading for all practising
decision makers for it is not merely an exercise in philoso-
phical argument. For those who have a sincere desire for a
disciplined approach to decisions, it is a must; for those who
are inclined to jump in with both feet it will be a salutary
exercise.

Lou Francis (Birmingham)
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