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Cubic spline solutions to two-point boundary value problems

By E. L. Albasiny* and W. D. Hoskinsf

The cubic spline approximation to a two-point boundary value problem for the differential
equation y”’ + f(x)y’ + g(x)y = r(x) is shown to reduce to the solution of a three-term
recurrence relationship. For the special case when f(x) is a constant, the approximation is shown
to be simply related to a finite-difference representation and to have a local truncation error of

order % §.
(Received July 1968)

In a recent paper Bickley (1968) has considered the use
of the cubic spline for solving linear two-point boundary
value problems. The essential feature of his analysis is
that it leads to the solution of a set of linear equations
whose matrix of coefficients is of upper Hessenberg
form. The purpose of the present note is to show that
the spline solution can be obtained by solving a set of
equations with a tri-diagonal matrix of coefficients. The
analysis is particularly straightforward when the first
derivative is absent from the differential equation and
this case is considered first in the paper, a simple con-
nection being established between the spline solution and
a finite-difference representation. The more general case
when the first derivative term is present is considered
subsequently and explicit formulae for the recurrence
relation coefficients derived. In a simple special case
the spline fit is again shown to be related to a finite-
difference representation.

Description of procedure

It is shown by Ahlberg er al. (1967) that the cubic
spline S(x) interpolating to the function y(x) at the
knots x; = xo +jh (j=0,1,...,n) is given in the
interval x;_; < x < x; by the equation

(x; — x)3 (x —x; )}
SE) = My g+ M
h? (x; — x)
B
h? (x —x;_4)
+ (M) (1)
where M; = S”(x;) and y; = y(x;). Hence
ho ok .
SO+) = — 3 M; — M —I——’*lh—y!
G=0,1,....,n—1) (2)
and
ko h oy
S(x;—) = §MJ- +6Mj‘1 —}—y——’ h}J !

G=12...m @)
so that continuity of first derivatives implies

h 2% h D U
*Mj71+§Mj+6M,-+1=y]‘l :’ Y-t

6
G=1,2,...,n—1). 4

If we are given the differential equation

Y+ Yy +gx)y = rx) (%)
with associated boundary conditions*
W(xo) = a, y(x,) =b (6)

then the requirement that the spline approximation
should satisfy the differential equation (5) at the knots
xi(j=0,1,...,n) leads, on using equations (2) and (3),
to a set of relationships from which we can eliminate
the unknowns M,, M,,...,M,. The result, in con-
junction with the boundary conditions (6), is a set of
tri-diagonal equations for the determination of y,,

Yis o5 Vne

Case (a)—first derivative absent
For the special case of

Yy 4+ glx)y = r(x) @)

the analysis is extremely simple. We obtain immediately
from equation (7) that

Mj:rj—gjyj (j:O,l,...,n) (8)

where g; = g(x;), r; =r(x;), and substitution into
equation (4) yields

Vit (1 + %zgj+ 1) —Y; (2” 2Thzgj) +yj—|<1 +£l6fgj——1)
2

h
:—é(rj+l +4rj+rj41) (j: ]92""5”_ ]) (9)

This clearly corresponds to the finite-difference repre-
sentation

8, + (1 + $80g; = K1+ 48, (10)

which has a local truncation error of order 1_12 o*y. We
note that equation (10) is similar in appearance to the
well-known Numerov formula (National Physical
Laboratory (1961), p. 86) with 182 replacing i3 82.
The latter formula has of course a smaller truncation
error but does not produce such a smooth solution.
Equation (10) has been used previously by Albasiny
and Cooper (1963) for the solution of a problem in

* These conditions are taken for simplicity. More general
boundary conditions of the form ay’ 4+ fy = 7 are readily incor-
porated 1n the analysis.
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theoretical physics in which y”’’(x) was known to be
discontinuous at the point x = x;.

Equations (9) in conjunction with the boundary con-
ditions (6) represent a tri-diagonal set of equations
which are readily solved for the unknowns y,, ¥y, . . ., Va
The complete cubic spline solution is then given imme-
diately by equations (8) and (1).

Example 'We consider the example discussed by Bickley
(1968), namely

' +y+1=0, y0)=y(1) =0.

If we divide the interval [0, 1] into two equal sub-
intervals, then from equation (9)

y(0-5) = 3/22
and from equation (8)
25
My=M,=—1, M1:—2_2'

Hence from equations (2) and (3)

47 47
SO =g SOH=0, s()=—g

and the spline solution is

3

47 1 1 1 1
S(x) = @x—§x2—5x3 —{—l—la(x——i)

where a = 0 for x < 0-5and a =1 for x > 0-5. This
solution is, of course, identical with that obtained using
Bickley’s analysis.

Case (b)—first derivative present

More generally we are interested in spline approxi-
mations to equation (5), in which case the differential
equation gives on using equations (2) and (3)

h h fi
(1 “gﬁ') M; — e iMj1 =1; — & _;TI(yH—l =)

(j=0,1,..,n—1) 1
and
h h y
gﬁMj—l + (1 + gﬁ) M;=r;— gy, —J;_:(yj —¥i-1)
G=1,2,...n). (12)

Equations (11) and (12) constitute 2n equations in the
2n + 2 unknowns My, M,, ..., M, and Yo, Y1, . . s Yn-
Elimination of the M; leads directly to n — 1 equations
for the unknowns y, to y, which, together with the two
boundary conditions, are sufficient for their deter-
mination. We note that equations (11) and (12) imply
the relations (4).

Addition of equations (11) and (12) gives the relation-
ship

h h
gf_;'Mj—l + 2M; +8f}Mj+l = 2(r; — g;)
J )
- ill'(yj+l —yj—l) (]= 1’ 2:---;” - l) (13)

and elimination of M; between this equation and equa-
tion (4) yields

(1+58)me—2(1 - so)n+ (1=50)5m

g (1 58) M g (1 455) M

G=1L1L2,...,n—1). (14
But an explicit expression can be obtained for M;_; in
terms of y;_, and y; by eliminating M; between equation
(11) (with j replaced by j — 1) and equation (12), namely
A_]Mj— 1=
h fi-
(1 + _7,,f,) ["j—1 —&-1Yj-1 — JTI (v — yj—l)]
h |
+6f,>1 ["j — &Y — }_:(}’j - yj—l)]

G=12,...,nmn (15)
where

h h h?
4= (1=35-1) (1 +35) + 5651 (19
Similarly M, can be obtained in terms of y;,; and

y; from equation (11) and equation (12) (with j replaced
by j + 1), the resulting expression being

BiM; =
(A 5 )]

h fi
- 6fj+1 ["j — &V — ,_;()’j+1 - J’j)]

(G=0,1,..,n—1 (A7)
where

h h h?
B = A= (1=35) (1 3/51) + 3601 (1)
Substitution of the expressions for M;_; and M;,,
given by equations (15) and (17) into equation (14)
leads after straightforward but tedious manipulation to

the final three-term recurrence relationship for the
spline approximation, namely

h h?
Yi+1 (1 + ifj+1 + ggj+1)Aj
h h 2h?
—n[(1+350) 4+ (1=57-1) B~ T80
h h?
+J’j~1(1 - if}—l +—6_gj~1)Bj
h2
:E(Ajr]+l+4CJrJ+Bjrj_l) (j:1,2,...,n_1)

(19)

where A; and B; are given by equations (16) and (18) and
Th h?
C =1 +2—4(fj+1 —fi-1) — ﬁfj—lfjﬂ- (20)

Formula (19) is the counterpart of formula (9) when
the first derivative term is present and clearly reduces
to the latter when f(x) =0. It also simplifies con-
siderably when f(x) = constant, say c¢. For then a
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2

h .
factor 1 — TZCZ cancels throughout and equation (19)

reduces to
52 .+ﬁc( R )+h2(1—{—1—82) .
y] 2 yjfl y;41 6 gjyj
1
=h2(1+382)r, Q1)

1
which again has a local truncation error of order ES“y

(as in case (a)) and is the best three-point approximation
to

Y+ ey 4 g(x)y = r(x). (22)

On solving equations (19) in conjunction with the
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boundary conditions (6) for the y;, the full spline
solution is obtained by direct substitution into equation
(15) or (17) and (1). Derivatives at the nodal points
may be calculated from equations (2) or (3).

We observe that a boundary condition of the form
oy’ 4+ By = y at say x = x, may be approximated, on
using equations (15), (17) and (2) by a two-term relation-
ship connecting y, and y;, so that the tri-diagonal
structure of the equations for determining y, to y, is
retained.
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Book Review

Stochastic Approximation and Nonlinear Regression, by A. E.
Albert and L. A. Gardner; 204 pages. (MIT Press, 154s.)

Statistical inference may be defined as the art of drawing
sensible conclusions from variable data, and the history of
statistical theory is to some extent a development of ways of
describing the variability of data and of assessing the relative
merits of various possible conclusions. The problem, in
anything like complete generality, is vast. Under certain
strong restrictions substantial progress has been made,
particularly in the ‘stationary parametric’ case, when the
data may be regarded as realisations of mutually independent
random variables with a common probability distribution of
known functional form which involves one or more unknown
parameters. Here the ‘sensible conclusion’ that is sought is
a useful approximation for the unknown parameters, usually
expressed as a fallible statement (or ‘estimate’) of what their
actual values seem to be, together with some information
about the degree of reliability of this statement.

The theory of this approach was brought to its full flowering
by the late Sir Ronald Fisher. Crippling though the imposed
restrictions appear to be, the theory nevertheless had (and has)
a wide field of strictly practical applicability. Where the
functional form of the underlying probability distributions is
not known, or cannot reasonably be guessed, a closely related
procedure is available in which the experimental data are
expressed as random deviations from their average values,
these average values being known (or postulated) functions—
often linear—of given experimental conditions and unknown
parameters. This so-called regression approach is widely
used, particularly when the data are thought to be influenced
by several experimental factors. The parameters to be
estimated (usually by ‘least squares’) are then measures of the
sensitivity of the system to changes in the experimental
conditions. In this type of situation a body of experimental
data may be likened to a parcel of gold-bearing ore: the

quantity of golden information potentially available is finite,
and the most efficient mathematical processes must be used
to extract it, however protracted the computations. In the
last couple of decades, however, increasing attention has been
paid to the more complex situation where, instead of being
concerned with the analysis of a completed experiment, the
inferences we are interested in are related to an evolving
system in which data becomes available sequentially, and
analyses have to be made repeatedly—and rapidly—as fresh
data comes in. Here an inference leads to the immediate
action of modifying the system: indeed the whole purpose of
making a fresh observation is to decide how next to modify
the system—the ‘system’ being, for example, the progress of
a chemical industrial reaction. In this type of situation the
older static concept of efficiency of estimation may well have
to be abandoned since the speed with which the estimate can
be computed may be an overriding factor.

As a result of research and development in this area the
subject is beginning to define itself and books are now
beginning to appear with titles such as Optimization and
Control in Stochastic Systems. It is to this class that the work
under review belongs. Given data {Y,} from a time-series
whose mean-value function {F,(0)} is of known form but
involves an unknown parameter-vector 6, the problem of
estimating @ in this regression-type problem by an efficient
and rapid method is tackled by a ‘differential correction’
recursive approach in which the estimate f,,; of @ at the
(n + 1)-th stage is defined in terms of 7, by an equation of
the form

i1 =1, + an{ Yn - Fn(tn)}
where {a,} is a suitably chosen sequence of ‘smoothing’
vectors. The main aim of the monograph is to consider the
effect of various choices of smoothing vectors on the estimates
obtained.
EMLYN Lroyp (Lancaster)
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